Aggregation-induced emission of dimethyl tetraphenylsilole is due to restricted access to a conical intersection. The intersection allows for radiationless decay in solution but is not reachable in the aggregate phase.
Water presents puzzling properties once it gets confined, in particular its dielectric response becomes highly anisotropic. Here, we analyze the dielectric response of water within graphene slit pores based on molecular dynamics simulations.
In view of the increasing
importance of nanoconfined aqueous solutions
for various technological applications, it has become necessary to
understand how strong confinement affects the properties of water
at the level of molecular and even electronic structure. By performing
extensive ab initio simulations of two-dimensionally
nanoconfined water lamellae between graphene sheets subject to different
interlayer spacings, we find new regimes at interlayer distances of
10 Å and less where water can be described neither to behave
like interfacial water nor to be bulklike at the level of its H-bonding
characteristics and electronic structure properties. It is expected
that this finding will offer new opportunities to tune both diffusive
and reactive processes taking place in aqueous environments that are
strongly confined by chemically inert hard walls.
We have investigated the S0 → S1 UV vibronic spectrum and time-resolved S1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm−1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1ππ∗ excitation predicted by the calculations. The methyl torsion and ν1′ (butterfly) vibrations are strongly coupled, in the S1 state. The S0 → S1 vibronic spectrum breaks off at a vibrational excess energy Eexc ∼ 500 cm−1, indicating that a barrier in front of the ethylene-type S1⇝S0 conical intersection is exceeded, which is calculated to lie at Eexc = 366 cm−1. The S1⇝S0 internal conversion rate constant increases from kIC = 2 ⋅ 109 s−1 near the S1(v = 0) level to 1 ⋅ 1011 s−1 at Eexc = 516 cm−1. The 1ππ∗ state of 1MCyt also relaxes into the lower-lying triplet T1 (3ππ∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm−1. The ISC rate constant is 10–100 times lower than kIC; it increases from kISC = 2 ⋅ 108 s−1 near S1(v = 0) to kISC = 2 ⋅ 109 s−1 at Eexc = 516 cm−1. The T1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm−1. The T2 (3nπ∗) state lies >1500 cm−1 above S1(v = 0), so S1⇝T2 ISC cannot occur, despite the large SOC parameter of 10.6 cm−1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S0 → S1 spectrum. The effect of methylation on the radiationless decay to S0 and ISC to T1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanisms.
The use of high-temperature liquid water (HTW) as a reaction medium is a very promising technology in the field of green chemistry. In order to fully exploit this technology, it is crucial to unravel the reaction mechanisms of the processes carried out in HTW. In this work, the reaction mechanism of 2,5-hexanediol dehydration in HTW has been studied by means of three different ab initio simulations: the string method, metadynamics and molecular dynamics in real time. It is found that the whole reaction involving protonation, bond exchange and deprotonation occurs in a single step without a stable intermediate. The hydrogen bonded network of the surrounding water has a vital role in assisting an efficient proton relay at the beginning and at the end of the reaction. It is confirmed that the reaction is energetically most favorable in the S2 pathway with an estimated barrier of 36 kcal mol, which explains the high stereoselectivity and the reaction rate observed in experiment. The mechanistic insights provided by our study are relevant for a prominent class of reactions in the context of sustainable biomass processing, namely dehydration reactions of polyalcohol molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.