We report on the dynamical formation of self-bound quantum droplets in attractive mixtures of 39 K atoms. Considering the experimental observations of Semeghini et al., Phys. Rev. Lett. 120, 235301 (2018), we perform numerical simulations to understand the relevant processes involved in the formation of a metastable droplet from an out-of-equilibrium mixture. We first analyze the so-called self-evaporation mechanism, where the droplet dissipates energy by releasing atoms, and then we consider the effects of losses due to three-body recombinations and to the balancing of populations in the mixture. We discuss the importance of these three mechanisms in the observed droplet dynamics and their implications for future experiments.
Quantum optics with giant emitters has shown a new route for the observation and manipulation of non-Markovian properties in waveguide-QED. In this paper we extend the theory of giant atoms, hitherto restricted to the perturbative light-matter regime, to deal with the ultrastrong coupling regime. Using static and dynamical polaron methods we address the low energy subspace of a giant atom coupled to an Ohmic waveguide beyond the standard rotating wave approximation. We analyze the equilibrium properties of the system by computing the atomic frequency renormalization as a function of the coupling characterizing the localization-delocalization quantum phase transition for a giant atom. We show that virtual photons dressing the ground state are non-exponentially localized around the contact points but decay as a power-law. Dynamics of an initially excited giant atom are studied, pointing out the effects of ultrastrong coupling on the Lamb shift and the spontaneous emission decay rate. Finally we comment on the existence of the so-called oscillating bound states beyond the rotating wave approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.