ABSTRACT1. The community composition and spatial distribution of the macrobenthic fauna in relation to abiotic factors was investigated at 20 sites along the River Minho estuarine gradient, in the north-west Iberian Peninsula.2. A total of 68 taxa were identified and the non-indigenous invasive species Corbicula fluminea dominated both numerically (43.1%) and by biomass (97.7%).3. Multivariate analysis identified spatial differences in structure and composition of assemblages and suggests a continuum between five distinct assemblages along the length of the estuary. This situation fits the two-ecocline model in which an ecocline from the sea to mid-estuary overlaps with an ecocline from freshwater to mid-estuary.4. Each assemblage was found in a particular physico-chemical environment and had a specific composition. The distribution and diversity patterns were linked to salinity. However, inside each assemblage the sediment characteristics (granulometry and organic matter content) played an important role.5. The highest abundances, biomasses and total species numbers were recorded from upstream freshwater tidal areas, indicating the importance of these habitats within estuarine ecosystems.
During the summer of 2002, sampling was carried out in the Lima estuary in order to compare the pattern of the macrobenthic community's distribution in relation to physical and chemical variables. A total of 54 macrobenthic taxa were identified. Abundance, biomass and specific diversity varied among the twenty stations. Abundance ranged from 212 to 9856 ind./m 2 , with an average of 1581 ind./m 2 . Abra alba presented the highest density corresponding to 39.1% of the total specimens gathered, followed by Hediste diversicolor with 31.5%. Biomass ranged from 0.12 to 264.62 g AFDW/m 2 , with an average of 17.58 g AFDW/m 2 . Cerastoderma edule and A. alba were the species with a clear predominance in the total biomass, contributing 75.3 and 13.8%, respectively. The multivariate techniques used revealed a macrobenthic community with five distinct groups, particularly related to the sedimentological characteristics and salinity. These results demonstrated significant differences in macrobenthic assemblage's composition along an estuarine gradient. For the first time the presence of the nonindigenous invasive species Corbicula fluminea was described in this estuary.
Question: Small and marginal forest populations are a focus of attention because of their high biodiversity value as well as the risk of population decline and loss. In this context, we ask to what extent a small, marginal Quercus suber (Cork oak) population located in the eastern Iberian Peninsula (Valencia, Spain) has the capacity for self‐regeneration and what are the factors that determine its recruitment variability. Location: Quercus suber forest in Pinet (Valencia, Spain). Methods: We performed a spatially explicit sampling both of the recruitment and of the potential parameters that could account for the recruitment variability. Using regression techniques we model the recruitment occurrence and abundance, and then we test to what extent the model obtained is still constrained by the spatial dependence. Results: Quercus suber recruitment density ranges from 0 to 18.66 individuals/25m2 (mean = 1.46, SD = 2.8), with a very skewed distribution. Recruitment is similar under Q. suber forests and under Pinus forests, but it is almost absent under shrublands. Thus the parameters that explain most of the recruitment variability in local vegetation types are: the presence and cover of shrubs (negative relationship with recruitment), the basal area of Q. suber and Pinus and the amount of bare soil (all positively related to recruitment). These parameters are strongly related to the ecological processes driving recruitment (i.e. dispersal and predation) and they remove most of the spatial dependence of recruitment. Most recruiters, however, are small, forming a seedling bank rather than growing to successfully colonize new habitats. Conclusion: The results suggest that although recruitment densities are not very high, they do not limit potential regeneration in the Pinet Q. suber forest. However, successful regeneration is not observed. If we aim to increase the Pinet Q. suber population size, land management measures need to provide appropriate conditions for both seedling establishment in shrublands (e.g. shrub clearing) and seedling growth in woodlands (e.g. Pinus logging).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.