A series of novel C,N-cyclometalated benzimidazole ruthenium(II) and iridium(III) complexes of the types [(η(6)-p-cymene)RuCl(κ(2)-N,C-L)] and [(η(5)-C5Me5)IrCl(κ(2)-N,C-L)] (HL = methyl 1-butyl-2-arylbenzimidazolecarboxylate) with varying substituents (H, Me, F, CF3, MeO, NO2, and Ph) in the R4 position of the phenyl ring of 2-phenylbenzimidazole chelating ligand of the ruthenium (3a-g) and iridium complexes (4a-g) have been prepared. The cytotoxic activity of the new ruthenium(II) and iridium(III) compounds has been evaluated in a panel of cell lines (A2780, A2780cisR, A427, 5637, LCLC, SISO, and HT29) in order to investigate structure-activity relationships. Phenyl substitution at the R4 position shows increased potency in both Ru and Ir complexes (3g and 4g, respectively) as compared to their parent compounds (3a and 4a) in all cell lines. In general, ruthenium complexes are more active than the corresponding iridium complexes. The new ruthenium and iridium compounds increased caspase-3 activity in A2780 cells, as shown for 3a,d and 4a,d. Compound 4g is able to increase the production of ROS in A2780 cells. Furthermore, all the new compounds are able to overcome the cisplatin resistance in A2780cisR cells. In addition, some of the metal complexes effectively inhibit angiogenesis in the human umbilical vein endothelial cell line EA.hy926 at 0.5 μM, the ruthenium derivatives 3g (Ph) and 3d (CF3) being the best performers. QC calculations performed on some ruthenium model complexes showed only moderate or slight electron depletion at the phenyl ring of the C,N-cyclometalated ligand and the chlorine atom on increasing the electron withdrawing effect of the R substituent.
A library of over 20 cycloplatinated compounds of the type [Pt(dmba-R)LCl] (dmba-R = C,N-dimethylbenzylamine-like ligand; R being MeO, Me, H, Br, F, CF3, and NO2 substituents in the R5 or R4 position of the phenyl ring; L = DMSO and P(C6H4CF3-p)3) has been prepared. All compounds are active in both human ovarian carcinoma A2780 cells and cisplatin-resistant A2780cisR cells, with most of the DMSO platinum complexes exhibiting IC50 values in the submicromolar range in the A2780 cell line. Interestingly, DMSO platinum complexes show low cytotoxicity in the nontumorigenic kidney cell line BGM and therefore high selectivity factors SF. In addition, some of the DMSO platinum complexes effectively inhibit angiogenesis in the human umbilical vein endothelial cell line EA.hy926. These are the first platinum(II) complexes reported to inhibit angiogenesis at a close concentration to their IC50 in A2780 cells, turning them into dual cytotoxic and antiangiogenic compounds.
Platinum(iv) complexes take advantage of the exclusive conditions that occur within the tumor to carry out their cytotoxic activity. On the other hand, silk fibroin has natural properties which make it very interesting as a biomaterial: high biocompatibility, biodegradability, low immunogenicity, high cellular penetration capacity and high reactive surface. Herein we report the preparation of silk fibroin nanoparticles (SFNs) loaded with the hydrophobic Pt(iv) complex cis,cis,trans-[Pt(NH(3))(2)Cl(2)(O(2)CC(6)H(5))(2)] (PtBz). Only a small fraction of the loaded PtBz is released (less than 10% after 48 h). PtBz-SFNs trigger strong cytotoxic effects against human ovarian carcinoma A2780 cells and their cisplatin-resistant variant A2780cisR cells. Interestingly, PtBz-SFNs are very cytotoxic (nanomolar IC(50) values) toward the triple negative breast tumor cell line MDA-MB-231, and also toward SK-BR-3 and MCF-7, while maintaining an excellent selectivity index.
A series of 6 substitutionally inert and luminescent iridium(iii) antitumor agents of the type [Ir(CN)(NN)][PF] containing a benzimidazole NN ligand with an ester group as a handle for further functionalization has been prepared. They exhibit IC values in the high nanomolar range in some ovarian and breast cancer cell lines (approximately 100× more cytotoxic than cisplatin (CDDP) in MDA-MB-231) and are located in the actin cortex predominantly as shown by confocal luminescence microscopy. This discovery could open the door to a new large family of drug bioconjugates with diverse and simultaneous functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.