Coronavirus 19 Disease (COVID-19) originating in the province of Wuhan, China in 2019, is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), whose infection in humans causes mild or severe clinical manifestations that mainly affect the respiratory system. So far, the COVID-19 has caused more than 2 million deaths worldwide. SARS-CoV-2 contains the Spike (S) glycoprotein on its surface, which is the main target for current vaccine development because antibodies directed against this protein can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. However, the emergence of new SARS-CoV-2 variants could affect the effectiveness of vaccines. Here, we review the different types of vaccines designed and developed against SARS-CoV-2, placing emphasis on whether they are based on the complete S glycoprotein, its antigenic domains such as the receptor-binding domain (RBD) or short epitopes within the S glycoprotein. We also review and discuss the possible effectiveness of these vaccines against emerging SARS-CoV-2 variants.
SummaryOne of the hallmarks of life is the widespread use of certain essential ribozymes. The ubiquitous ribonuclease P (RNase P) and eukaryotic RNase MRP are essential complexes where a structured, noncoding RNA acts in catalysis. Recent discoveries have elucidated the three-dimensional structure of the ancestral ribonucleoprotein complex, suggested the possibility of a proteinonly composition in organelles, and even noted the absence of RNase P in a non-free-living organism. With respect to these last two findings, import mechanisms for RNases P/MRP into mitochondria have been demonstrated, and RNase P is present in organisms with some of the smallest known genomes. Together, these results have led to an ongoing debate regarding the precise definition of how ''essential'' these ribozymes truly are. IUBMBIUBMB Life, 64(6): [521][522][523][524][525][526][527][528] 2012
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.