Unilateral ureteral obstruction is a popular experimental model of renal injury. However, the study of the kidney response to urinary tract obstruction is only one of several advantages of this model. Unilateral ureteral obstruction causes subacute renal injury characterized by tubular cell injury, interstitial inflammation and fibrosis. For this reason, it serves as a model both of irreversible acute kidney injury and of events taking place during human chronic kidney disease. Being a unilateral disease, it is not useful to study changes in global kidney function, but has the advantage of a low mortality and the availability of an internal control (the non-obstructed kidney). Experimental unilateral ureteral obstruction has illustrated the molecular mechanisms of apoptosis, inflammation and fibrosis, all three key processes in kidney injury of any cause, thus providing information beyond obstruction. Recently this model has supported key concepts on the role in kidney fibrosis of epithelial-mesenchymal transition, tubular epithelial cell G2/M arrest, the anti-aging hormone Klotho and renal innervation. We now review the experimental model and its contribution to identifying novel therapeutic targets in kidney injury and fibrosis, independently of the noxa.
Members of the TNF superfamily participate in kidney disease. Tumor necrosis factor (TNF) and Fas ligand regulate renal cell survival and inflammation, and therapeutic targeting improves the outcome of experimental renal injury. TNF-related apoptosis-inducing ligand (TRAIL and its potential decoy receptor osteoprotegerin are the two most upregulated death-related genes in human diabetic nephropathy. TRAIL activates NF-kappaB in tubular cells and promotes apoptosis in tubular cells and podocytes, especially in a high-glucose environment. By contrast, osteoprotegerin plays a protective role against TRAIL-induced apoptosis. Another family member, TNF-like weak inducer of apoptosis (TWEAK induces inflammation and tubular cell death or proliferation, depending on the microenvironment. While TNF only activates canonical NF-kappaB signaling, TWEAK promotes both canonical and noncanonical NF-kappaB activation in tubular cells, regulating different inflammatory responses. TWEAK promotes the secretion of MCP-1 and RANTES through NF-kappaB RelA-containing complexes and upregulates CCl21 and CCL19 expression through NF-kappaB inducing kinase (NIK-) dependent RelB/NF-kappaB2 complexes. In vivo TWEAK promotes postnephrectomy compensatory renal cell proliferation in a noninflammatory milieu. However, in the inflammatory milieu of acute kidney injury, TWEAK promotes tubular cell death and inflammation. Therapeutic targeting of TNF superfamily cytokines, including multipronged approaches targeting several cytokines should be further explored.
The tubular epithelium may be intrinsically involved in promoting kidney injury by junctional instability, epithelial-mesenchymal transition (EMT) and extracellular matrix remodelling. In this work, we investigated whether the pleiotropic and proinflammatory cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK), could be able to disturb junctional protein expression and to induce EMT of tubular cells. In cultured murine proximal tubular cells TWEAK induced phenotypic changes that were accompanied by F-actin redistribution, loss of epithelial adherent (E-cadherin, Cadherin-16, β-catenin) and tight junction (ZO-1) proteins, and re-expression of the mesenchymal protein Vimentin. The transcriptional repressors Snail and HNF1β were also modulated by TWEAK. In a murine model of obstructive renal pathology, TWEAK expression correlated with the appearance of the mesenchymal marker αSMA in kidney tubular cells. Mechanistically, the epithelial changes induced by TWEAK, including loss of epithelial integrity and EMT, via Fn14 were TGF-β1 independent, but mediated by several intracellular signaling systems, including the canonical NF-κB, ERK activation and the vitamin D receptor modulation. These results highlight potential contributions of TWEAK-induced inflammatory mechanisms that could unveil new pathogenic effects of TWEAK starting tubulointerstitial damage and fibrosis.
The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models.In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-κB activation. Similar to JAK2 kinase inhibitors, QM56 inhibited Tweak-induced NF-κB transcriptional activity and chemokine expression, despite failing to inhibit NF-κB-p65 nuclear translocation and NF-κB DNA binding. QM56 prevented JAK2 activation and NF-κB-p65(Ser536) phosphorylation. The anti-inflammatory effect and JAK2 inhibition by QM56 were observed in Apaf-1−/− cells. In murine acute kidney injury, QM56 decreased tubular cell apoptosis and kidney inflammation as measured by down-modulations of MCP-1 and Rantes mRNA expression, immune cell infiltration and activation of the JAK2-dependent inflammatory pathway.In conclusion, QM56 has an anti-inflammatory activity which is independent from its role as inhibitor of Apaf-1 and apoptosis and may have potential therapeutic relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.