Approximate resolution of linear systems of differential equations with varying coefficients is a recurrent problem shared by a number of scientific and engineering areas, ranging from Quantum Mechanics to Control Theory. When formulated in operator or matrix form, the Magnus expansion furnishes an elegant setting to built up approximate exponential representations of the solution of the system. It provides a power series expansion for the corresponding exponent and is sometimes referred to as Time-Dependent Exponential Perturbation Theory. Every Magnus approximant corresponds in Perturbation Theory to a partial re-summation of infinite terms with the important additional property of preserving at any order certain symmetries of the exact solution.The goal of this review is threefold. First, to collect a number of developments scattered through half a century of scientific literature on Magnus expansion. They concern the methods for the generation of terms in the expansion, estimates of the radius of convergence of the series, generalizations and related non-perturbative expansions. Second, to provide a bridge with its implementation as generator of especial purpose numerical integration methods, a field of intense activity during the last decade. Third, to illustrate with examples the kind of results one can expect from Magnus expansion in comparison with those from both perturbative schemes and standard numerical integrators. We buttress this issue with a revision of the wide range of physical applications found by Magnus expansion in the literature.
Approximate solutions of matrix linear differential equations by matrix exponentials are considered. In particular, the convergence issue of Magnus and Fer expansions is treated. Upper bounds for the convergence radius in terms of the norm of the defining matrix of the system are obtained. The very few previously published bounds are improved. Bounds to the error of approximate solutions are also reported. All results are based just on algebraic manipulations of the recursive relation of the expansion generators. §
We construct numerical integrators for Hamiltonian problems that may advantageously replace the standard Verlet time-stepper within Hybrid Monte Carlo and related simulations. Past attempts have often aimed at boosting the order of accuracy of the integrator and/or reducing the size of its error constants; order and error constant are relevant concepts in the limit of vanishing step-length. We propose an alternative methodology based on the performance of the integrator when sampling from Gaussian distributions with not necessarily small step-lengths. We construct new splitting formulae that require two, three or four force evaluations per time-step. Limited, proof-of-concept numerical experiments suggest that the new integrators may provide an improvement on the efficiency of the standard Verlet method, especially in problems with high dimensionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.