A novel ion source based on the principle of sonic spray ionization has been built and used to optimize mass spectrometric conditions for generating amino acid clusters. The ion source employs a simple pneumatic spray operated at extremely high nebulizing gas flow rates. Several factors that affect the performance of the cluster source are identified, and information from these observations provides insights into the mechanisms of gas phase ion formation. Serine is used as a model system in optimizing instrumental and sample parameters to maximize cluster ion formation. The sonic spray results for this oligomer compare favorably with electrospray data, showing an order of magnitude better signal intensity and excellent signal-to-noise ratios. The performance of the system for the protonated serine octamer includes a limit of detection of 10 nM and a linear dynamic range of 4 orders of magnitude. Ion formation was observed to go into saturation above 1 mM. This result and data on pH, electrolyte concentration, and solvent composition are interpreted as supporting a charge residue model of sonic spray ionization. Other amino acids can be substituted for serine in the octamer, with a strong chiral preference in favor of homochiral cluster formation in the cases of threonine and cysteine. These amino acids show a preference for substitution of more than two serine molecules. Phenylalanine, asparagine, tryptophan, and tyrosine also substitute into the serine octamer; however, the process yields only two incorporations and only small chiral effects.
The emergence of homochirality continues to be one of the most challenging topics associated with the origin of life. One possible scenario is that aggregates of amino acids might have been involved in a sequence of chemical events that led to chiral biomolecules in self-replicating systems, that is, to homochirogenesis. Serine is the amino acid of principal interest, since it forms "magic-number" ionic clusters composed of eight amino acid units, and the clusters have a remarkable preference for homochirality. These serine octamer clusters (Ser8) can be generated under simulated prebiotic conditions and react selectively with other biomolecules. These observations led to the hypothesis that serine reactions were responsible for the first chiral selection in nature which was then passed through chemical reactions to other amino acids, saccharides, and peptides. This Review evaluates the chemistry of Ser8 clusters and the experimental evidence that supports their possible role in homochirogenesis.
The earliest molecule of life? Chirally selective reactions relevant to the origin of homochiral life are undergone by serine. Chiral exchange between serine, glyceraldehyde, and glucose occurs, favoring the enantiomers (L‐serine, D‐sugars) present in modern living systems (see picture).
Self-clustering of the five common nucleobases was investigated by electrospray ionization tandem mass spectrometry and shown to provide insight into the non-covalent interactions between identical bases. Alkali and ammonium cations significantly increase self-aggregation of the nucleobases and lead to the formation of uniquely stable magic number clusters. Sodium adducts of guanine, thymine and uracil preferentially take the form of tetrameric (quartet) clusters. This gas-phase result correlates with previously reported solution-phase data on sodium cation stabilized guanosine, thymine and uracil quartet structures believed to be responsible for telomere stabilization. In the presence of potassium, cesium or ammonium cations, pentameric magic number clusters are formed from thymine and uracil, while in solution the nucleoside isoguanosine yields clusters of this favored size. The formation of magic number metaclusters occurs for thymine and uracil in the presence of ammonium cations. These doubly charged 10- and 15-mers are tentatively attributed to the formation of pentamer/ammonium cation/ pentamer sandwich structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.