Tau hyperphosphorylation can be considered as one of the hallmarks of Alzheimer's disease and other tauophaties. Besides its well-known role as a microtubule associated protein, Tau displays a key function as a protector of genomic integrity in stress situations. Phosphorylation has been proven to regulate multiple processes including nuclear translocation of Tau. In this contribution, we are addressing the physicochemical nature of DNA-Tau interaction including the plausible influence of phosphorylation. By means of surface plasmon resonance (SPR) we measured the equilibrium constant and the free energy, enthalpy and entropy changes associated to the Tau-DNA complex formation. Our results show that unphosphorylated Tau binding to DNA is reversible. This fact is in agreement with the protective role attributed to nuclear Tau, which stops binding to DNA once the insult is over. According to our thermodynamic data, oscillations in the concentration of dephosphorylated Tau available to DNA must be the variable determining the extent of Tau binding and DNA protection. In addition, thermodynamics of the interaction suggest that hydrophobicity must represent an important contribution to the stability of the Tau-DNA complex. SPR results together with those from Tau expression in HEK cells show that phosphorylation induces changes in Tau protein which prevent it from binding to DNA. The phosphorylation-dependent regulation of DNA binding is analogous to the Tau-microtubules binding inhibition induced by phosphorylation. Our results suggest that hydrophobicity may control Tau location and DNA interaction and that impairment of this Tau-DNA interaction, due to Tau hyperphosphorylation, could contribute to Alzheimer's pathogenesis.
Tau protein has been proposed as a trigger of Alzheimer's disease once it is hyperphosphorylated. However, the role that native tau forms play inside the neuronal nucleus remains unclear. In this work we present results concerning the interaction of tau protein with double-stranded DNA, single-stranded DNA, and also with a histone-DNA complex. The tau-DNA interaction results in a structure resembling the beads-on-a-string form produced by the binding of histone to DNA. DNA retardation assays show that tau and histone induce similar DNA retardation. A surface plasmon resonance study of tau-DNA interaction also confirms the minor groove of DNA as a binding site for tau, similarly to the histone binding. A residual binding of tau to DNA in the presence of Distamycin A, a minor groove binder, suggests the possibility that additional structural domains on DNA may be involved in tau interaction. Finally, DNA melting experiments show that, according to the Zipper model of helix-coil transition, the binding of tau increases the possibility of opening the DNA double helix in isolated points along the chain, upon increasing temperature. This behavior is analogous to histones and supports the previously reported idea that tau could play a protective role in stress situations. Taken together, these results show a similar behavior of tau and histone concerning DNA binding, suggesting that post-translational modifications on tau might impair the role that, by modulating the DNA function, might be attributable to the DNA-tau interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.