The Metropolitan Area of Barcelona is a densely populated region in the North-East of the Iberian Peninsula. Infrastructures in this area play a significant role in the economy of this part of Europe. The combination of the Mediterranean Sea and the complex topography is responsible for the occurrence of severe weather events in this location and the surrounding areas. The use of remote sensing data in an hourly resolution allows the identification and characterization of those severe episodes, helping in determining the future trends of the adverse weather. This fact is crucial in the development of new engineering projects, as well as in the maintenance of the current ones. Weather radar and lightning observations have enabled the monitoring of an increase in severe weather occurrence and, in addition, the prime characteristics of the thunderstorms responsible for producing them. Deepening vertical developments, the presence of hail, and the decrease of the rainfall efficiency are some of the characteristics that must be taken into account in the near future.
The rainfall regime is changing in the Catalan territory, likely in most areas in the Mediterranean Basin. This variability, spatial and temporal, means that there may be periods of severe drought combined with periods of heavy rainfall and floods. In this way, the management of water resources is complicated and can produce a high impact on different social aspects. The high convective activity leads to investigating the relationship between the electric discharges and radar parameters (reflectivity, echo top, vertically integrated liquid, and accumulated rainfall). The correlation allows identifying some elements that may be significant in terms of changes in rainfall regimes. Besides, using several radar parameters apart from precipitation accumulation reveals interesting explicit patterns of the previously known. These patterns can help better understand the precipitation behavior and the changes associated with it.
A field campaign at Siple Dome in West Antarctica during the austral summer 2019-2020 offers an opportunity to evaluate climate model performance, particularly cloud microphysical simulation. Over Antarctic ice sheets and ice shelves, clouds are a major regulator of the surface energy balance, and in the warm season their presence occasionally induces surface melt that can gradually weaken an ice shelf structure. This dataset from Siple Dome, obtained using transportable and solar-powered equipment, includes surface energy balance measurements, meteorology and cloud remote sensing. To demonstrate how these data can be used to evaluate model performance, comparisons are made with meteorological reanalysis known to give generally good performance over Antarctica (ERA5). Surface albedo measurements show expected variability with observed cloud amount, and can be used to evaluate a model's snowpack parameterization. One case study discussed involves a squall with northerly winds, during which ERA5 fails to produce cloud cover throughout one of the days. A second case study illustrates how shortwave spectroradiometer measurements that encompass the 1.6-micron atmospheric window reveal cloud phase transitions associated with cloud lifecycle. Here, continuously precipitating mixed-phase clouds become mainly liquid water clouds from local morning through the afternoon, not reproduced by ERA5. We challenge researchers to run their various regional or global models in a manner that has the large-scale meteorology follow the conditions of this field campaign, compare cloud and radiation simulations with this Siple Dome dataset, and potentially investigate why cloud microphysical simulations or other model components might produce discrepancies with these observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.