MRI can favor clinical diagnosis providing morphological and functional information of several neurological disorders. This paper deals with the problem of exploiting both data, in a combined way, to develop a tool able to support clinicians in the study and diagnosis of Alzheimer’s Disease (AD). In this work, 69 subjects from the ADNI open database, 33 AD patients and 36 healthy controls, were analyzed. The possible existence of a relationship between brain structure modifications and altered functions between patients and healthy controls was investigated performing a correlation analysis on brain volume, calculated from the MRI image, the clustering coefficient, derived from fRMI acquisitions, and the Mini Mental Score Examination (MMSE). A statistically-significant correlation was found only in four ROIs after Bonferroni’s correction. The correlation analysis alone was still not sufficient to provide a reliable and powerful clinical tool in AD diagnosis however. Therefore, a machine learning strategy was studied by training a set of support vector machine classifiers comparing different features. The use of a unimodal approach led to unsatisfactory results, whereas the multimodal approach, i.e., the synergistic combination of MRI, fMRI, and MMSE features, resulted in an accuracy of 95.65%, a specificity of 97.22%, and a sensibility of 93.93%.
This work focuses on the heat transfer dynamics in agricultural soils when exposed to microwave fields, in order to disinfect them and to eliminate dangerous organisms without using pesticides. The work manages with the use of a horn antenna to irradiate the superficial layer of soils and so to eliminate harmful bio-agents within a fixed depth. The soil was approximated using a transmission line model. Considering the dielectric constant of the ground as a function of the soil water content, it was possible to evaluate the power absorbed by the irradiated ground and the temperature increase and its profile depending on the irradiation time. Since the latter information is strictly connected to the heat transfer process occurring in the system, we demonstrated the feasibility of the methodology here proposed to achieve difficult conditions for microbial and pathogens life, leading to an effective disinfection of the treated farmland
The design of a microwave irradiated enzyme (biochemical) reactor is here presented. It consists of a suitable higher‐order mode resonant cavity which contains several tubes where the solution containing reagents and products flow in the laminar flow regime. The process evolution under irradiation has then been simulated using the COMSOL multiphysics environment. As an example, the enzymatic hydrolysis reaction of sucrose has been considered. The results of the multiphysics simulation show that such a reactor can be used to effectively perform the reaction process in the optimal conditions for maximizing the reaction rate and preventing the enzyme deactivation by a precise knowledge of the temperature distribution and its strict control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.