Key Points• Outcome prediction in DLBCL.• MYC status in concert with BCL2 and BCL6.MYC rearrangements occur in 5% to 10% of diffuse large B-cell lymphomas (DLBCL) and confer an increased risk to cyclophosphamide, hydroxydaunorubicin, oncovin, and prednisone (CHOP) and rituximab (R)-CHOP treated patients. We investigated the prognostic relevance of MYC-, BCL2-and BCL6-rearrangements and protein expression in a prospective randomized trial. Paraffin-embedded tumor samples from 442 de novo DLBCL treated within the RICOVER study of the German High-Grade NonHodgkin Lymphoma Study Group (DSHNHL) were investigated using immunohistochemistry and fluorescence in situ hybridization (FISH) to detect protein expression and breaks of MYC, BCL2, and BCL6. Rearrangements of MYC, BCL2, and BCL6 were detected in 8.8%, 13.5%, and 28.7%, respectively. Protein overexpression of MYC (>40%) was encountered in 31.8% of tumors; 79.6% and 82.8% of tumors expressed BCL2 and BCL6, respectively. MYC translocations, MYChigh, BCL2high, and BCL6low protein expressions were associated with inferior survival. In multivariate Cox regression modeling, protein expression patterns of MYC, BCL2 and BCL6, and MYC rearrangements were predictive of outcome and provided prognostic information independent of the International Prognostic Index (IPI) for overall survival and event-free survival. A combined immunohistochemical or FISH/immunohistochemical score predicts outcome in DLBCL patients independent of the IPI and identifies a subset of 15% of patients with dismal prognosis in the high-risk IPI group following treatment with R-CHOP.
The potential benefits of extended rituximab treatment have been investigated in a randomized trial comparing the standard schedule with prolonged treatment in 202 patients with newly diagnosed or refractory/relapsed follicular lymphoma (FL). All patients received standard treatment (rituximab 375 mg/m 2 weekly ؋ 4). In 185 evaluable patients, the overall response rate was 67% in chemotherapynaive patients and 46% in pretreated cases (P < .01). Patients responding or with stable disease at week 12 (n ؍ 151) were randomized to no further treatment
Key Points• Richter syndrome has genomic complexity intermediate between chronic lymphocytic leukemia and diffuse large B-cell lymphoma.• Inactivation of TP53 and of CDKN2A is a main mechanism in the transformation to Richter syndrome.Richter syndrome (RS) occurs in up to 15% of patients with chronic lymphocytic leukemia (CLL). Although RS, usually represented by the histologic transformation to a diffuse large B-cell lymphoma (DLBCL), is associated with a very poor outcome, especially when clonally related to the preexisting CLL, the mechanisms leading to RS have not been clarified. To better understand the pathogenesis of RS, we analyzed a series of cases including 59 RS, 28 CLL phase of RS, 315 CLL, and 127 de novo DLBCL. RS demonstrated a genomic complexity intermediate between CLL and DLBCL. Cell-cycle deregulation via inactivation of TP53 and of CDKN2A was a main mechanism in the histologic transformation from CLL phase, being present in approximately one half of the cases, and affected the outcome of the RS patients. A second major subgroup was characterized by the presence of trisomy 12 and comprised one third of the cases. Although RS shared some of the lesions seen in de novo DLBCL, its genomic profile was clearly separate. The CLL phase preceding RS had not a generalized increase in genomic complexity compared with untransformed CLL, but it presented clear differences in the frequency of specific genetic lesions. (Blood. 2013;122(15):2673-2682
Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype-specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell-like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling. (Blood. 2009; 113:2488-2497 IntroductionAberrant DNA methylation is a hallmark of cancer. Virtually all cancer types are associated with alterations of the methylome. These include global DNA hypomethylation, mostly targeting DNA repeats, and hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes. [1][2][3][4] It is widely accepted that tumor suppressor gene inactivation by DNA hypermethylation allows the tumor clone to obtain a selective (eg, proliferative) advantage. However, recent reports have provided evidence for an instructive mechanism behind aberrant DNA methylation in cancer, which might indicate that specific sequences are predisposed to acquire epigenetic alterations. [5][6][7][8][9] Remarkably, 3 independent reports have recently shown that a highly significant proportion of genes becoming hypermethylated in cancer were already repressed at the embryonic stem cell (ESC) stage by polycomb group (PcG) marks. 7-9 These findings are considered to support the "cancer stem cell theory" in which The online version of this article contains a data supplement.The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked ''advertisement'' in accordance with 18 USC section 1734. For personal use only. on May 13, 2018. by guest www.bloodjournal.org From aberrant epigenetic changes of PcG target genes occurring in a cell with stem cell features might represent the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.