BackgroundSharing the common neuroectodermal origin, melanoma and neuroblastoma are tumors widely diffused among adult and children, respectively. Clinical prognosis of aggressive neuroectodermal cancers remains dismal, therefore the search for novel therapies against such tumors is warranted. Curcumin is a phytochemical compound widely studied for its antioxidant, anti-inflammatory and anti-cancer properties. Recently, we have synthesized and tested in vitro various curcumin-related compounds in order to select new anti-tumor agents displaying stronger and selective growth inhibition activity on neuroectodermal tumors.ResultsIn this work, we have demonstrated that the new α,β-unsaturated ketone D6 was more effective in inhibiting tumor cells growth when compared to curcumin. Normal fibroblasts proliferation was not affected by this treatment. Clonogenic assay showed a significant dose-dependent reduction in both melanoma and neuroblastoma colony formation only after D6 treatment. TUNEL assay, Annexin-V staining, caspases activation and PARP cleavage unveiled the ability of D6 to cause tumor cell death by triggering apoptosis, similarly to curcumin, but with a stronger and quicker extent. These apoptotic features appear to be associated with loss of mitochondrial membrane potential and cytochrome c release. In vivo anti-tumor activity of curcumin and D6 was surveyed using sub-cutaneous melanoma and orthotopic neuroblastoma xenograft models. D6 treated mice exhibited significantly reduced tumor growth compared to both control and curcumin treated ones (Melanoma: D6 vs control: P < 0.001 and D6 vs curcumin P < 0.01; Neuroblastoma: D6 vs both control and curcumin: P < 0.001).ConclusionsOur data indicate D6 as a good candidate to develop new therapies against neural crest-derived tumors.
In the last few years, halogen bonds have been exploited in a variety of research areas both in the solid state and in solution. Nevertheless, several factors make formation and detection of halogen bonds in solution challenging. Moreover, to date, few chiral molecules containing electrophilic halogens as recognition sites have been reported. Recently, we described the first series of halogen-bond-driven enantioseparations performed on cellulose tris(3,5-dimethylphenylcarbamate) by high-performance liquid chromatography. Herein the performances of amylose tris(3,5-dimethylphenylcarbamate) as halogen bond acceptor were also investigated and compared with respect to cellulose tris(3,5-dimethylphenylcarbamate). With the aim to explore the effect of polysaccharide backbone on the enantioseparations, the thermodynamic parameters governing the halogen-dependent enantioseparations on both cellulose and amylose polymers were determined by a study at variable temperature and compared. Molecular dynamics were performed to model the halogen bond in polysaccharide-analyte complexes. Chiral halogenated 4,4'-bipyridines were used as test compounds (halogen bond donors). On this basis, a practical method for detection of stereoselective halogen bonds in solution was developed, which is based on the unprecedented use of high-performance liquid chromatography as technical tool with polysaccharide polymers as molecular probes (halogen bond acceptors). The analytical strategy showed higher sensitivity for the detection of weak halogen bonds.
Liquid‐phase enantioseparations have been fruitfully applied in several fields of science. Various applications along with technical and theoretical advancements contributed to increase significantly the knowledge in this area. Nowadays, chromatographic techniques, in particular HPLC on chiral stationary phase, are considered as mature technologies. In the last thirty years, CE has been also recognized as one of the most versatile technique for analytical scale separation of enantiomers. Despite the huge number of papers published in these fields, understanding mechanistic details of the stereoselective interaction between selector and selectand is still an open issue, in particular for high‐molecular weight chiral selectors like polysaccharide derivatives. With the ever growing improvement of computer facilities, hardware and software, computational techniques have become a basic tool in enantioseparation science. In this field, molecular docking and dynamics simulations proved to be extremely adaptable to model and visualize at molecular level the spatial proximity of interacting molecules in order to predict retention, selectivity, enantiomer elution order, and profile noncovalent interaction patterns underlying the recognition process. On this basis, topics and trends in using docking and molecular dynamics as theoretical complement of experimental LC and CE chiral separations are described herein. The basic concepts of these computational strategies and seminal studies performed over time are presented, with a specific focus on literature published between 2015 and November 2018. A systematic compilation of all published literature has not been attempted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.