A bacterial membrane protein, BacA, protects Sinorhizobium meliloti against the antimicrobial activity of host peptides, enabling the peptides to induce bacterial persistence rather than bacterial death.
Rhizobial soil bacteria can form a symbiosis with legumes in which the bacteria fix atmospheric nitrogen into ammonia that can be utilized by the host. The plant, in turn, supplies the rhizobia with a carbon source. After infecting the host cell, the bacteria differentiate into a distinct bacteroid form, which is able to fix nitrogen. The bacterial BacA protein is essential for bacteroid differentiation in legumes producing nodule-specific cysteine-rich peptides (NCRs), which induce the terminal differentiation of the bacteria into bacteroids. NCRs are antimicrobial peptides similar to mammalian defensins, which are important for the eukaryotic response to invading pathogens. The BacA protein is essential for rhizobia to survive the NCR peptide challenge. Similarities in the lifestyle of intracellular pathogenic bacteria suggest that host factors might also be important for inducing chronic infections associated with Brucella abortus and Mycobacterium tuberculosis. Moreover, rhizobial lipopolysaccharide is modified with an unusual fatty acid, which plays an important role in protecting the bacteria from environmental stresses. Mutants defective in the biosynthesis of this fatty acid display bacteroid development defects within the nodule. In this review, we will focus on these key components, which affect rhizobial bacteroid development and survival.
Background: Legume antimicrobial peptides (AMPs) mediate Sinorhizobium meliloti bacteroid differentiation. Results: Cysteine replacements and disulfide bond modifications influence the antimicrobial activity of a legume AMP and its ability to mediate S. meliloti bacteroid differentiation. Conclusion: Specific changes to legume AMPs influence their activity against S. meliloti. Significance: Understanding the relationship of AMPs in S. meliloti bacteroid differentiation is fundamental for nitrogen fixation and legume growth.
The utility of 5-fluoro-5-deoxyribose (FDR) as an efficient bioconjugation agent for radiolabelling of the RGD peptides c(RGDfK) and c(RGDfC) is demonstrated. The bioconjugation is significantly superior to that achieved with 2-fluoro-2-deoxyglucose (FDG) and benefits from the location of the fluorine at C-5, and that ribose is a 5-membered ring sugar rather than a 6-membered ring. Both features favour ring opening to the aldehydic form of the sugar to promote smooth oxime ligation with aminooxy ether functionalised peptides. [(18)F]FDR was prepared in this study by synthesis from fluoride-18 using an automated synthesis protocol adapting that used routinely for [(18)F]FDG. c(RGDfK) was functionalised with an aminooxyacetyl group (Aoa) via its lysine terminus, while c(RGDfC) was functionalised with an aminooxyhexylmaleimide (Ahm) through a cysteine-maleimide conjugation. Bioconjugation of [(18)F]FDR to c(RGDfC)-Ahm proved to be more efficient than c(RGDfK)-Aoa (92% versus 65%). The unlabelled ((19)F) bioconjugates c(RGDfK)-Aoa-FDR and c(RGDfC)-Ahm-FDR were prepared and their in vitro affinity to purified integrin αvβ3 was determined. c(RGDfK)-Aoa-FDR showed the greater affinity. Purified "hot" bioconjugates c(RGDfK)-Aoa-[(18)F]FDR and c(RGDfC)-Ahm-[(18)F]FDR were assayed by incubation with MCF7, LNCaP and PC3 cell lines. In both cases the conjugated RGD peptides showed selectivity for PC3 cells, which express αvβ3 integrin, with the c(RGDfK)-Aoa-[(18)F]FDR demonstrating better binding, consistent with its higher in vitro affinity. The study demonstrates that [(18)F]FDR is an efficient bioconjugation ligand for RGD bioactive peptides.
[(18)F]-5-Fluoro-5-deoxyribose ([(18)F]-FDR) conjugates much more rapidly than [(18)F]-FDG under mild reaction conditions to peptides and offers new prospects for mild and rapid bioconjugation for fluorine-18 labelling in PET imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.