On Mars, the presence of extensive networks of sinuous valleys and large channels provides evidence for a wetter and warmer environment where liquid water was more abundant than it is at present. We undertook an analysis of all major channel systems on Mars and detected sharp changes in elevation along the river long profiles associated with steep headwall theatre-like valleys and terraces left downstream by channel incision. These breaks in channel longitudinal slope, headwalls and terraces exhibit a striking resemblance with terrestrial fluvial features, commonly termed ‘knickpoints’. On Earth, such knickpoints can be formed by more resistant bedrock or where changes in channel base-level have initiated erosion that migrates upstream (such as tectonic uplift or sea level change). We observed common elevations of Martian knickpoints in eleven separate channel systems draining into the Martian Northern lowlands. Numerical modeling showed that the common elevations of some of these knickpoints were not random. As the knickpoints are spread across the planet, we suggest that these Martian knickpoints were formed in response to a common base level or ocean level rather than local lithology. Thus, they potentially represent a record of past ocean levels and channel activity on Mars.
There is widespread evidence across Mars of past flows in major channel systems as well as more than one palaeo ocean level. However, evidence for the timing of channel flows and ocean levels is based on geographically diverse sources with a limited number of dates, making reconstructions of palaeo flows and ocean levels patchy. Here, based on high-resolution topography, image analysis and crater statistics, we have dated 35 different surfaces in Kasei Valles, that are predominantly found within erosional units enabling us to reconstruct a fascinating timeline of episodic flooding events (ranging from 3.7 to 3.6 Ga to ca. 2.0 Ga) interacting with changing ocean/base levels. The temporal correlation of the different surfaces indicates five periods of channel flows driving the evolution of Kasei Valles, in conjunction with the development of (at least) two ocean levels. Furthermore, our results imply that such ocean rose in elevation (ca. 1000 m) between ca. 3.6 Ga and 3.2 Ga and soon afterwards disappeared, thereby indicating a complex ancient Martian hydrosphere capable of supporting a vast ocean, with an active hydrological cycle stretching into the Amazonian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.