In this chapter a hybrid algorithm is constructed, implemented and tested for the optimization of graph drawing employing a multiobjective approach. The multiobjective optimization problem for graph drawing consists of three objective functions: minimizing the number of edge crossing, minimizing the graph area, and minimizing the aspect ratio. The population of feasible solutions is generated using a hybrid algorithm and at each step a Pareto front is calculated. This hybrid algorithm combines a global search algorithm (EDA — Estimation of Distribution Algorithm) with a local search Algorithm (HC — Hill Climbing) in order to maintain a balance between the exploration and exploitation. Experiments were performed employing planar and non-planar graphs. A quality index of the obtained solutions by the hybrid MOEA-HCEDA (Multiobjective Evolutionary Algorithm - Hill Climbing & Univariate Marginal Distribution Algorithm) is constructed based on the Pareto front defined in this chapter. A factorial experiment using the algorithm parameters was performed. The factors are number of generations and population size, and the result is the quality index. The best combination of factors levels is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.