Graphical Abstract Highlights d Hi-M simultaneously reveals 3D chromatin organization and transcriptional activity d Hi-M and Hi-C maps agree across several orders of magnitude d Chromatin is spatially compacted into TADs after the midblastula transition d TAD internal organization dramatically changes upon transcriptional activation
Acquisition of cell fate is thought to rely on the specific interaction of remote cis-regulatory modules (CRMs), e.g. enhancers, and target promoters. However, the precise interplay between chromatin structure and gene expression is still unclear, particularly within multicellular developing organisms. Here we employ Hi-M, a single-cell spatial genomics approach, to detect CRM-promoter looping interactions within topologically associating domains (TADs) during early Drosophila development. By comparing cis-regulatory loops in alternate cell types, we show that physical proximity does not necessarily instruct transcriptional states. Moreover, multi-way analyses reveal multiple CRMs spatially coalesce to form hubs. Loops and CRM hubs are established early during development, prior to the emergence of TADs. Moreover, CRM hubs are formed, in part, via the action of the pioneer transcription factor Zelda and precede transcriptional activation. Our approach provides insight into the role of CRM-promoter interactions in defining transcriptional states, as well as distinct cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.