Biomass gasification is realized as a settled process to produce energy in a sustainable form, between all the biomass-based energy generation routes. Consequently, there are a renewed interest in biomass gasification promoting the research of different mathematical models to enlighten and comprehend gasification process complexities. This review is focused on the thermodynamic equilibrium models, which is the class of models that seems to be more developed. It is verified that the review articles available in the literature do not address non-stoichiometric methods, as well as an ambiguous categorization of stoichiometric and non-stoichiometric methods. Therefore, the main purpose of this article is to review the non-stoichiometric equilibrium models and categorize them, and review the different stoichiometric equilibrium model’s categorization available in the literature. The modeling procedures adopted for the different modeling categories are compared. Conclusion can be drawn that almost all equilibrium models are modified by the inclusion of empirical correction factors that improves the model prediction capabilities but with loss of generality.
In this work, brewers’ spent grains (BSG) were evaluated and studied in order to obtain a combustible gas by means of allothermal steam gasification. BSG were preprocessed in a rotary dryer and a pelletizer prior to gasification in an indirectly heated batch reactor. BSG characterization was conducted by means of proximate, ultimate, and thermogravimetric analysis, allowing us to conclude that BSG have characteristics comparable to those of regular lignocellulosic biomasses. Gasification tests were performed in an allothermal bench-scale batch reactor in order to determine the effect of temperature and steam-to-biomass ratio (S/B) in the produced gas. The produced gas was mainly composed of 22.8–30.2% H2, 15.1–22.3% CO, and 7.2–11.1% CH4, contributing to a heating value of 8.11–9.0 MJ/Nm3 with the higher values found for a low S/B ratio and for high temperatures. The performance of the process was assessed by evaluating the cold gas and carbon conversion efficiencies. These indicators were found to be in the ranges 47.0%–52.1% and 57.0%–62.7%, respectively. The main conclusion of this work is that the produced gas obtained from BSG steam gasification has sufficient quality to open other options to beer producers to use their own brewing wastes to satisfy their energy needs, allowing them to progress toward the circular economy concept.
Environmental problems associated with global energy supply systems and the increasing amount of global solid waste production are triggering a shift towards a greater reliance on biomass waste. Waste-to-energy systems have become important for industries and scientists because of the increasing interest in energy production from waste, due to improved efficiency and cost-effective solutions. The shift to biomass is also essential for industries to use their own waste to produce their own energy, which is in line with circular economy concepts. This Special Issue “Biomass Wastes for Energy Production” of Energies comprises ten (10) papers, including one review article, that represent the latest advances of waste-to-energy technologies and contribute to the rethinking of global energy supply systems. The Guest Editor also highlights other relevant topics that fall beyond the coverage of the published articles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.