Mueller matrix polarimeters (MMPs) are designed to probe the polarization properties of optical scattering processes. When using a MMP for a detection, discrimination, classification, or identification task, a user considers certain elements of the Mueller matrix. The usual way of performing this task is to measure the full Mueller matrix and discard the unused elements. For polarimeter designs with speed, miniaturization, or other constraints, it may be desirable to have a system with reduced dimensionality that measures only elements of the Mueller matrix that are important in a particular application as efficiently as possible. In this paper, we develop a framework that allows partial MMPs to be analyzed. Quantitative metrics are developed by considering geometrical relationships between the space spanned by a particular MMP and the space occupied by the scene components. The method is generalized to allow the effects of noise to be considered. The results are general and can also be used to optimize complete and overspecified MMPs for performing specific tasks, as well.
When using a MMP for a detection or identification task, a user considers certain elements of the Mueller matrix. The usual way of performing this task is to measure the full Mueller matrix and discard the unused elements. For polarimeter designs with speed, miniaturization, or other constraints it may be desirable to have a system with reduced dimensionality that measures only the important elements of the Mueller matrix as efficiently as possible. In this paper, we develop a framework that allows partial MMPs to be analyzed. Quantitative metrics are developed by considering geometrical relationships between the space spanned by a particular MMP and the space occupied by the scene components. The method is generalized to allow the effects of noise to come into the equation when noise performance is important as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.