The use of titanium membrane, alone or in association with autogenous bone, favored the prevention of alveolar ridge after tooth extraction. This membrane seems to be a possible and safe alternative to other nonresorbable membranes when the prevention of alveolar ridge resorption is the objective.
Objective : To investigate the influence of a three-dimensional cell culture model on the expression of osteoblastic phenotype in human periodontal ligament fibroblast (hPDLF) cultures.Material and Methods : hPDLF were seeded on bi-dimensional (2D) and three-dimensional (3D) collagen type I (experimental groups) and and on a plastic coverslip (control) for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity were performed. Also, cell morphology and immunolabeling for alkaline phosphatase (ALP) and osteopontin (OPN) were assessed by epifluorescence and confocal microscopy. The expression of osteogenic markers, including alkaline phosphatase, osteopontin, osteocalcin (OC), collagen I (COL I) and runt-related transcription factor 2 (RUNX2), were analyzed using real-time polymerase chain reaction (RT-PCR). Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay.Results : Experimental cultures produced an increase in cell proliferation. Immunolabeling for OPN and ALP in hPDLF were increased and ALP activity was inhibited by three-dimensional conditions. OPN and RUNX2 gene expression was significantly higher on 3D culture when compared with control surface. Moreover, ALP and COL I gene expression were significantly higher in three-dimensional collagen than in 2D cultures at 7 days. However, at 14 days, 3D cultures exhibited ALP and COL I gene expression significantly lower than the control, and the COL I gene expression was also significantly lower in 3D than in 2D cultures. Significant calcium mineralization was detected and quantified by alizarin red assay, and calcified nodule formation was not affected by tridimensionality.Conclusion : This study suggests that the 3D cultures are able to support hPDLF proliferation and favor the differentiation and mineralized matrix formation, which may be a potential periodontal regenerative therapy.
ADM is not suitable as a three-dimensional matrix for gingival fibroblasts ingrowth. Gingival fibroblasts and highly proliferative cells as B16F10 can only be superficially located on ADM, and CGF are negatively affected by culture medium conditioned in ADM, reducing its viability.
Initial breakdown of the implant-tissue interface generally begins at the crestal region in successfully osseointegrated implants. The purpose of this study was to evaluate the effect on crestal bone loss (CBL) around implants specially developed for immediate loading with a unique crestal drill. After 8 weeks postextraction, 6 young male mongrel dogs received 48 implants (XiVE) in the region corresponding to the 4 mandibular premolars. The implant sites were prepared according to the manufacturer's protocol with conventional standard drills. Before implant placement, the crestal drill was used in the experimental group but not in the control group. After a healing period of 12 weeks, the dogs were sedated and euthanized. Through linear measurements, from the top of the implant to the first bone-implant contact, the amount of CBL was determined. The histomorphometric results of CBL (mean +/- SEM) were 0.88 +/- 0.13 mm (range 0.0-3.0 mm) in the experimental group and 1.69 +/- 0.17 mm (range 0.0-4.2 mm) in the control group. The difference was statistically significant (P < .05) when the implants were used as the experimental units. The statistical analysis also revealed significance when the dogs were used as the experimental units (P < .05). When the median was used for analyses, the CBL was 0.44 mm for the experimental group and 1.91 mm for the control group. Crestal bone loss was minimized when the crestal preparation protocol was carefully followed by using the osseocondensating XiVE implant system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.