Many rural areas along Spain do not have access to the Internet. Despite the huge spread of technology that has taken place during recent years, some rural districts and isolated villages have a lack of proper communication infrastructures. Moreover, these areas and the connected regions are notably experiencing a technological gap. As a consequence of this, the implementation of technological health solutions becomes impracticable in these zones where demographic conditions are especially particular. Thus, inhabitants over 65 suppose a large portion of such population, and many elderly people live alone at their homes. These circumstances also impact on local businesses which are widely related to the agricultural and livestock industry. Taking into account this situation, this paper proposes a solution based on an opportunistic network algorithm which enables the deployment of technological communication solutions for both elderly healthcare and livestock industrial activities in rural areas. This way, two applications are proposed: a presence detection platform for elderly people who live alone and an analytic performance measurement system for livestock. The algorithm is evaluated considering several simulations under multiple conditions, comparing the delivery probability, latency, and overhead outcomes with other well-known opportunistic routing algorithms. As a result, the proposed solution quadruples the delivery probability of Prophet, which presents the best results among the benchmark solutions and greatly reduces the overhead regarding other solutions such as Epidemic or Prophet. This way, the proposed approach provides a reliable mechanism for the data transmission in these scenarios.
Summary
During the last decade, the mobile application market has grown steadily thanks to the massive use of smartphones and the emergence of cloud computing for offloading computation tasks and improving the quality of experience. With the more recent deployment of Internet of Things (IoT) devices, this cloud‐based architectural design and the corresponding communication flow has been maintained. Nevertheless, the increasing amount of information exchanged, the stringent requirements of many IoT applications, and the need for these applications to adapt their behavior in real time to the user's context set these architectural assumptions a challenge. Paradigms such as mobile, mist, and edge computing have recently been proposed to exploit the computational and storage capabilities of current smartphones and IoT devices in order to onload some tasks onto them, reducing the overhead on both the cloud and the network. Currently, the application of these paradigms requires much attention from skilled developers to create ad hoc systems, as there lack standards and tools facilitating their use. This communication introduces Human Microservices as a framework facilitating the deployment of APIs on companion devices in order to provide personal and updated information that can be consumed by other entities. The framework improves the integration of humans in the IoT loop and facilitates the deployment of computation units in devices closer to end users, enhancing system response time by reducing the stress on cloud and network infrastructure. The proposed framework is based on existing standards in order to improve software quality and shorten the learning curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.