Despite recent advances, assessing biological measurements for neuropsychiatric disorders is still a challenge, where confounding variables such as gender and age (as a proxy for neurodevelopment) play an important role. This study explores brain structural magnetic resonance imaging (sMRI) from two public data sets (ABIDE-II and ADHD-200) with healthy control (HC, N = 894), autism spectrum disorder (ASD, N = 251), and attention deficit hyperactivity disorder (ADHD, N = 357) individuals. We used gray and white matter preprocessed via voxel-based morphometry (VBM) to train a 3D convolutional neural network with a multitask learning strategy to estimate gender, age, and mental health status from structural brain differences. Gradient-based methods were employed to generate attention maps, providing clinically relevant identification of most representative brain regions for models’ decision-making. This approach resulted in satisfactory predictions for gender and age. ADHD-200-trained models, evaluated in 10-fold cross-validation procedures on test set, obtained a mean absolute error (MAE) of 1.43 years (±0.22 SD) for age prediction and an area under the curve (AUC) of 0.85 (±0.04 SD) for gender classification. In out-of-sample validation, the best-performing ADHD-200 models satisfactorily predicted age (MAE = 1.57 years) and gender (AUC = 0.89) in the ABIDE-II data set. The models’ accuracy was in line with the current state-of-the-art machine learning applications in neuroimaging. Key regions for models’ accuracy were presented as a meaningful graphical output. New implementations, such as the use of VBM along with a 3D convolutional neural network multitask learning model and a brain imaging graphical output, reinforce the relevance of the proposed workflow.
Recently, several studies have investigated the neurodevelopment of psychiatric disorders using brain data acquired via structural magnetic resonance imaging (sMRI). These analyses have shown the potential of sMRI data to provide a relatively precise characterization of brain structural biomarkers. Despite these advances, a relatively unexplored question is how reliable and consistent a model is when assessing subjects from other independent datasets. In this study, we investigate the performance and generalizability of the same model architecture trained from distinct datasets comprising youths in diverse stages of neurodevelopment and with different mental health conditions. We employed models with the same 3D convolutional neural network (CNN) architecture to assess autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), brain age, and a measure of dimensional psychopathology, the Child Behavior Checklist (CBCL) total score. The investigated datasets include the Autism Brain Imaging Data Exchange II (ABIDE-II, N = 580), Attention Deficit Hyperactivity Disorder (ADHD-200, N = 922), Brazilian High-Risk Cohort Study (BHRCS, N = 737), and Adolescent Brain Cognitive Development (ABCD, N = 11,031). Models’ performance and interpretability were assessed within each dataset (for diagnosis tasks) and inter-datasets (for age estimation). Despite the demographic and phenotypic differences of the subjects, all models presented significant estimations for age (p value < 0.001) within and between datasets. In addition, most models showed a moderate to high correlation in age estimation. The results, including the models' brain regions of interest (ROI), were analyzed and discussed in light of the youth neurodevelopmental structural changes. Among other interesting discoveries, we found that less confounded training datasets produce models with higher generalization capacity.
Generative Adversarial Networks (GANs) are promising analytical tools in machine learning applications. Characterizing atypical neurodevelopmental processes might be useful in establishing diagnostic and prognostic biomarkers of psychiatric disorders. In this article, we investigate the potential of GANs models combined with functional connectivity (FC) measures to build a predictive neurotypicality score 3-years after scanning. We used a ROI-to-ROI analysis of resting-state functional magnetic resonance imaging (fMRI) data from a community-based cohort of children and adolescents (377 neurotypical and 126 atypical participants). Models were trained on data from neurotypical participants, capturing their sample variability of FC. The discriminator subnetwork of each GAN model discriminated between the learned neurotypical functional connectivity pattern and atypical or unrelated patterns. Discriminator models were combined in ensembles, improving discrimination performance. Explanations for the model’s predictions are provided using the LIME (Local Interpretable Model-Agnostic) algorithm and local hubs are identified in light of these explanations. Our findings suggest this approach is a promising strategy to build potential biomarkers based on functional connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.