O controle da qualidade de alimentos é muito importante para determinar as suas composições e teor nutritivo, bem como para detectar eventuais fraudes e adulterações, sejam elas em matérias-primas ou produtos industrializados. Por exemplo, o leite bovino pode sofrer adulteração por adição de outros produtos, com o objetivo de aumentar o volume ou prolongar o prazo de validade, causando prejuízos econômicos e sanitários. Este trabalho apresenta um estudo sobre a caracterização de leite fluido utilizando técnicas de ultra-som e redes neurais artificiais. Utilizou-se uma célula de medição de propriedades de líquidos por ultra-som para obter dados de densidade, velocidade de propagação e coeficiente de atenuação, que foram relacionados com as concentrações de gordura e água adicionada em amostras de leite bovino, obtidas com métodos convencionais utilizados em laticínios, para efeito de calibração das amostras. Esses dados foram utilizados para projetar redes neurais artificiais, que fornecem na saída o teor de gordura e a quantidade de água adicionada ao leite, a partir dos parâmetros medidos pela célula de medição. As redes neurais desenvolvidas resultaram em mais de 95% de amostras classificadas corretamente, com uma resolução de 0,1% na determinação da quantidade de gordura. Para quantidade de água adicionada, a resolução foi de 1% para 1 a 10% de água adicionada, e resolução de 5% para quantidade de água adicionada de 10 a 60%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.