The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70-76% and 68-73% EMG(MAX), respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.
The aim of this study was to compare the EMG patterns of trunk muscles throughout the golf swing, performed with two different clubs, and also to describe the activity patterns in the average golfer.
Nine male golfers performed ten swings using the pitching wedge and the 4-iron, alternately. Surface electromyography (EMG) was recorded from trunk muscles of both sides: rectus abdominis (RA), external oblique (EO), erector spinae (ES) and gluteus maximus (GM). 3D high-speed video analysis was used for determination of golf swing phases. Muscles had their highest activation during the forward swing and acceleration phases. The highest mean activation regarding the maximal EMG (EMGMAX), was found in the right EO (59–67% EMGMAX) and in the GM of the trailing leg (62–72% EMGMAX). In the majority of the cases and phases, trunk muscles showed higher mean values of EMG activation when golfers performed with 4-iron club. However, no club effect was verified in trunk muscles.
a b s t r a c tThere is a lack of studies regarding EMG temporal analysis during dynamic and complex motor tasks, such as golf swing. The aim of this study is to analyze the EMG onset during the golf swing, by comparing two different threshold methods. Method A threshold was determined using the baseline activity recorded between two maximum voluntary contraction (MVC). Method B threshold was calculated using the mean EMG activity for 1000 ms before the 500 ms prior to the start of the Backswing. Two different clubs were also studied. Three-way repeated measures ANOVA was used to compare methods, muscles and clubs. Two-way mixed Intraclass Correlation Coefficient (ICC) with absolute agreement was used to determine the methods reliability.Club type usage showed no influence in onset detection. Rectus abdominis (RA) showed the higher agreement between methods. Erector spinae (ES), on the other hand, showed a very low agreement, that might be related to postural activity before the swing. External oblique (EO) is the first being activated, at 1295 ms prior impact. There is a similar activation time between right and left muscles sides, although the right EO showed better agreement between methods than left side. Therefore, the algorithms usage is task-and muscle-dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.