The aim of this paper is to explore the watertightness behaviour for high pressure applications using Multi Jet Fusion technology and polyamide 12 as a material. We report an efficient solution for manufacturing functional prototypes and final parts for water pressure applications and provide manufacturing rules for engineers in the pressurized product development process for up to 10 MPa of nominal pressure. The research findings show manufacturers the possibility of using additive manufacturing as an alternative to traditional manufacturing. Water leakage was studied using different printing orientations and wall thicknesses for a range of pressure values. An industrial ball valve was printed and validated with the ISO 9393 standard as also meeting tolerance requirements. This paper is a pioneering approach to the additive manufacturing of high-performance fluid handling components. This approach solves the problem of leakage caused by porosity in additive manufacturing technologies.
Doped ceria deposits have been prepared on 3D-printed polyamide-12 components starting from inkjet-compatible solutions in an attempt to functionalize the surface of the plastic part, followed by a low temperature decomposition process at 160°C in air. The non-continuous deposits were characterized by simultaneous thermogravimetric analysis, differential scanning calorimetry and evolved gas analysis, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, transmission electron microscopy and electron diffraction. After thermal treatment, the deposits are still clearly visible at the surface of the polymer. However, no crystallinity of the ceria is observed, in contrast to identical low temperature processing on inert substrates such as glass where nanoparticle ceria aggregates were produced. This is tentatively explained by the chemically-reducing character of the polyamide, and in particular to CO and hydrocarbon gases released during the heating process, which would continuously induce the reduction of Ce 4+ to Ce 3+ at the low temperature of 160°C, influencing the non-detection of crystalline ceria.
The aim of this paper is to explore the watertightness behaviour for high pressure applications using Multijetfusion technology and polyamide 12 as a material. It reports an efficient solution for manufacturing functional prototypes and final parts for water pressure applications. It provides manufacturing rules to engineers in the pressurized product development process up to 10 MPa of nominal pressure. The research findings show manufacturers the possibility of using additive manufacturing as an alternative to traditional manufacturing. Water leakage was studied using different printing orientations and wall thickness for a range of pressure values. An industrial ball valve was printed and validated with the ISO 9393 standard also meeting tolerance requirements. This paper is a pioneering approach to the additive manufacturing of high performance fluid handling components. This approach solves the problem of leakage caused by porosity in additive manufacturing technologies. Keywords: keyword 1; keyword 2; keyword 3 (List three to ten pertinent keywords specific to the article; yet reasonably common within the subject discipline.) Preprints (www.preprints.org) | NOT PEER-REVIEWED |
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.