Agricultural land abandonment is an important environmental issue in Europe. The proper management of agricultural areas has important implications for ecosystem services (food production, biodiversity, climate regulation and the landscape). In the coming years, an increase of abandoned areas is expected due to socio-economic changes. The identification and quantification of abandoned agricultural plots is key for monitoring this process and for applying management measures. The Valencian Region (Spain) is an important fruit and vegetable producing area in Europe, and it has the most important citrus industry. However, this agricultural sector is highly threatened by diverse factors, which have accelerated land abandonment. Landsat and MODIS satellite images have been used to map land abandonment. However, these images do not give good results in areas with high spatial fragmentation and small-sized agricultural plots. Sentinel-2 and airborne imagery shows unexplored potential to overcome this thanks to higher spatial resolutions. In this work, three models were compared for mapping abandoned plots using Sentinel-2 with 10 m bands, Sentinel-2 with 10 m and 20 m bands, and airborne imagery with 1 m visible and near-infrared bands. A pixel-based classification approach was used, applying the Random Forests algorithm. The algorithm was trained with 144 plots and 100 decision trees. The results were validated using the hold-out method with 96 independent plots. The most accurate map was obtained using airborne images, the Enhanced Vegetation Index (EVI) and Thiam’s Transformed Vegetation Index (TTVI), with an overall accuracy of 88.5%. The map generated from Sentinel-2 images (10 m bands and the EVI and TTVI spectral indices) had an overall accuracy of 77.1%. Adding 20 m Sentinel-2 bands and the Normalized Difference Moisture Index (NDMI) did not improve the classification accuracy. According to the most accurate map, 4310 abandoned plots were detected in our study area, representing 32.5% of its agricultural surface. The proposed methodology proved to be useful for mapping citrus in highly fragmented areas, and it can be adapted to other crops.
Agricultural land abandonment is an increasing problem in Europe. The Comunitat Valenciana Region (Spain) is one of the most important citrus producers in Europe suffering this problem. This region characterizes by small sized citrus plots and high spatial fragmentation which makes necessary to use Very High-Resolution images to detect abandoned plots. In this paper spectral and Gray Level Co-Occurrence Matrix (GLCM)-based textural information derived from the Normalized Difference Vegetation Index (NDVI) are used to map abandoned citrus plots in Oliva municipality (eastern Spain). The proposed methodology is based on three general steps: (a) extraction of spectral and textural features from the image, (b) pixel-based classification of the image using the Random Forest algorithm, and (c) assignment of a single value per plot by majority voting. The best results were obtained when extracting the texture features with a 9 × 9 window size and the Random Forest model showed convergence around 100 decision trees. Cross-validation of the model showed an overall accuracy of the pixel-based classification of 87% and an overall accuracy of the plot-based classification of 95%. All the variables used are statistically significant for the classification, however the most important were contrast, dissimilarity, NIR band (720 nm), and blue band (620 nm). According to our results, 31% of the plots classified as citrus in Oliva by current methodology are abandoned. This is very important to avoid overestimating crop yield calculations by public administrations. The model was applied successfully outside the main study area (Oliva municipality); with a slightly lower accuracy (92%). This research provides a new approach to map small agricultural plots, especially to detect land abandonment in woody evergreen crops that have been little studied until now.
Since remote sensing of ocean colour began in 1978, several ocean-colour sensors have been launched to measure ocean properties. These measures have been applied to study water quality, and they specifically can be used to study algal blooms. Blooms are a natural phenomenon that, due to anthropogenic activities, appear to have increased in frequency, intensity, and geographic distribution. This paper aims to provide a systematic analysis of research on remote sensing of algal blooms during 1999–2019 via bibliometric technique. This study aims to reveal the limitations of current studies to analyse climatic variability effect. A total of 1292 peer-reviewed articles published between January 1999 and December 2019 were collected. We read all the literature individually to build a database. The number of publications increased since 2004 and reached the maximum value of 128 in 2014. The publications originated from 47 countries, but the number of papers published from the top 10 countries accounted for 77% of the total publications. To be able to distinguish between climate variability and changes of anthropogenic origin for a specific variable is necessary to define the baseline. However, long-term monitoring programs of phytoplankton are very scarce; only 1% of the articles included in this study analysed at least three decades and most of the existing algal blooms studies are based on sporadic sampling and short-term research programs.
La Safor wetland is a representative coastal wetland in the Valencia Region (eastern Spain, Mediterranean Sea). This wetland is recognized at an international level as a Special Protection Area (SPAs) for birds and a Site of Community Importance (SCIs) (Habitats Directive, European Council Directive). The wetland is located on a detrital plain aquifer which in turn is fed by a karstic aquifer in the near limestone reliefs. The flooded surface is variable and depends on pluviometry among other factors. The objective of this study is to analyse the effects of the flooded surface on land uses by remote sensing and Airborne LiDAR data. Sentinel-2A images processed at level 1C were obtained from Copernicus. LiDAR data was used to detect the most vulnerable areas affected by floods. In the results, we analysed the impact of the maximum flooded surface on land uses. We propose several corrective actions on the drainage net based on our analysis. This methodology can be applied to other wetland areas of similar characteristics. The advantage is the high spatial resolution which makes the methodology suitable for small sized wetlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.