We propose in this work a new method for estimating the main mode of multivariate distributions, with application to eye-tracking calibrations. When performing eye-tracking experiments with poorly cooperative subjects, such as infants or monkeys, the calibration data generally suffer from high contamination. Outliers are typically organized in clusters, corresponding to the time intervals when subjects were not looking at the calibration points. In this type of multimodal distributions, most central tendency measures fail at estimating the principal fixation coordinates (the first mode), resulting in errors and inaccuracies when mapping the gaze to the screen coordinates. Here, we developed a new algorithm to identify the first mode of multivariate distributions, named BRIL, which rely on recursive depth-based filtering. This novel approach was tested on artificial mixtures of Gaussian and Uniform distributions, and compared to existing methods (conventional depth medians, robust estimators of location and scatter, and clustering-based approaches). We obtained outstanding performances, even for distributions containing very high proportions of outliers, both grouped in clusters and randomly distributed. Finally, we demonstrate the strength of our method in a real-world scenario using experimental data from eyetracking calibrations with Capuchin monkeys, especially for distributions where other algorithms typically lack accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.