Abstract:The main function of an airport is to provide access to air transport both for passengers and cargo. The number of air operations over the past 20 years has increased rapidly, and this has led to a rise in the energy needs of airports to satisfy this demand. As a consequence, the cost of energy supply for airport managers has escalated. At the same time, global energy consumption has soared due to the needs of emerging countries like China and India, with the consequent environmental impact. This complex scenario of environmental and economic factors has made airport managers become aware of the need to reduce energy consumption as well as a more efficient use of it. The aim of this article is to analyze the main behaviors and energy trends at airports in more recent research, starting with the description of the main energy sources and consumers, the application of energy conservation and energy efficiency measures, the establishment of energy indicators and benchmarking between airports, as well as energy modeling and simulation.
Airports in general have high-energy consumption. Influenced by many factors, the characteristics of airport energy consumption are stochastic, nonlinear and dynamic. In recent years, airport managers have made huge efforts to harmonize airport operation with environmental sustainability by minimizing the environmental impact, with energy conservation and energy efficiency as one of their pillars. A key factor in order to reduce energy consumption at airports is to understand the energy use and consumption behavior, due to the multiple parameters and singularities that are involved. In this article, a 3-step methodology based on monitoring methods is proposed to characterize and analyze energy demand patterns in airports through their electric load profiles, and is applied to the Seve Ballesteros-Santander Airport (Santander, Spain). This methodology can be also used in airports in order to determine the way energy is used, to establish the classification of the electrical charges based on their operation way as well as to determine the main energy consumers and main external influencers. Results show that airport present a daily energy demand pattern since electric load profiles follow a similar curve shape for every day of the year, having a great dependence of the terminal building behavior, the main energy consumer of the airport, and with heating, ventilation and air conditioning (HVAC) and lighting being the most energy-intensive facilities, and outside temperature and daylighting the main external influencers.
This article analyzes the conditions for the implementation of wind energy in airport facilities, considering safety and requirements according to international standards related to free airspace for aircraft can enter and leave it in a safe, also known as the aeronautical easements. Other particular aspects of an airport are also analyzed, such as marking and signaling, the affection of the environment, the quality of the electric supply, the characteristics of the wind resource and the economic constraints. With such data, this paper seek to lay the technical precedents that an engineer should consider to design a wind power facilities in airports, due to existing papers do not focus on the great potential of this type of locations for wind facilities because of the special conditions that have this type of transport infrastructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.