The rates of protein synthesis and degradation and of amino acid transport were determined in the leg muscle of untrained postabsorptive normal volunteers at rest and approximately 3 h after a resistance exercise routine. The methodology involved use of stable isotopic tracers of amino acids, arteriovenous catheterization of the femoral vessels, and biopsy of the vastus lateralis muscle. During postexercise recovery, the rate of intramuscular phenylalanine utilization for protein synthesis increased above the basal value by 108 +/- 18%, whereas the rate of release from proteolysis increased by 51 +/- 17%. Muscle protein balance improved (P < 0.05) after exercise but did not become positive (from -15 +/- 12 to -6 +/- 3 nmol phenylalanine.min-1.100 ml leg volume-1). After exercise, rates of inward transport of leucine, lysine, and alanine increased (P < 0.05) above the basal state from 132 +/- 16 to 208 +/- 29, from 122 +/- 8 to 260 +/- 8, and from 384 +/- 71 to 602 +/- 89 nmol.min-1.100 ml leg-1, respectively. Transport of phenylalanine did not change significantly. These results indicate that, during recovery after resistance exercise, muscle protein turnover is increased because of an acceleration of synthesis and degradation. A postexercise acceleration of amino acid transport may contribute to the relatively greater stimulation of protein synthesis.
We have used stable isotopic tracers of amino acids to measure in vivo transmembrane transport of phenylalanine, leucine, lysine, alanine, and glutamine as well as the rates of intracellular amino acid appearance from proteolysis, de novo synthesis, and disappearance to protein synthesis in human skeletal muscle. Calculations were based on data obtained by the arteriovenous catheterization of the femoral vessels and muscle biopsy. We found that the fractional contribution of transport from the bloodstream to the total intracellular amino acid appearance depends on the individual amino acid, varying between 0.63 +/- 0.02 for phenylalanine and 0.22 +/- 0.02 for alanine. Rates of alanine and glutamine de novo synthesis were approximately eight and five times their rate of appearance from protein breakdown, respectively. The model-derived rate of protein synthesis was highly correlated with the same value calculated by means of the tracer incorporation technique. Furthermore, amino acid transport rates were in the range expected from literature values. Consequently, we conclude that our new model provides a valid means of quantifying the important aspects of protein synthesis, breakdown, and amino acid transport in human subjects.
We have investigated the relationships between the rates of muscle protein synthesis and degradation and of transmembrane transport of selected amino acids in leg skeletal muscle of 19 severely burned patients and 18 normal controls in the postabsorptive state. Patients were studied on the 14 +/- 5 postburn day, and their mean burn size was 66% +/- 18% of total body surface area. Methods were based on the leg arteriovenous balance technique in combination with biopsies of the vastus lateralis muscle and infusions of isotopic tracers of amino acids. Net muscle protein breakdown was greater in the patients because of an 83% increase in the rate of muscle protein degradation. The rate of muscle protein synthesis was also increased in the patients but to a lesser extent than protein degradation, i.e. by 50% with the arteriovenous phenylalanine balance technique and by 49% with the direct tracer incorporation method. The absolute values of inward transport of phenylalanine, leucine, and lysine were not significantly different in the two groups. However, the ability of transport systems to take up amino acids from the bloodstream, as assessed by dividing inward transport by amino acid delivery to leg muscle, were 50-63% lower in the patients. In contrast, outward phenylalanine and lysine transport were 40% and 67% greater in the patients than in the controls, respectively. We conclude the primary alteration in muscle protein metabolism is an acceleration of protein breakdown, and the increase in protein synthesis likely is due to increased intracellular amino acid availability as a result of accelerated breakdown. Transmembrane transport in the outward direction is accelerated, presumably to facilitate the export of amino acids from muscle to other tissues. In contrast, transmembrane transport in the inward direction is impaired relatively to the increased delivery of circulating amino acid to skeletal muscle secondary to accelerated blood flow.
The posterior branch of the medial antebrachial cutaneous nerve courses in proximity to the cubital tunnel and is particularly prone to injury during ulnar nerve release at the elbow. Inadvertent injury to medial antebrachial cutaneous nerve branches during surgery can result in the formation of painful neuromas that can be misdiagnosed as recurrent disease. It is important to understand the relevant anatomy of the medial antebrachial cutaneous nerve branches during cubital tunnel surgery to avoid significant postoperative morbidity. This prospective observational anatomic study examined the position of the posterior branch of the medial antebrachial cutaneous nerve in relationship to a standard approach to the cubital tunnel in a randomly selected group of 97 patients undergoing primary surgery over a 3-year period. Medial antebrachial cutaneous nerve branches were noted to cross at or proximal to the medial humeral epicondyle 61 percent of the time at an average proximal distance of 1.8 cm. Medial antebrachial cutaneous nerve branches were noted to cross distal to the medial humeral epicondyle 100 percent of the time at an average distal distance of 3.1 cm. Understanding the general position of crossing medial antebrachial cutaneous nerve branches during ulnar nerve release at the elbow may help to prevent iatrogenic injury to this cutaneous nerve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.