We propose a linear regression method and a maximum likelihood technique for estimating the service demands of requests based on measurement of their response times instead of their CPU utilization. Our approach does not require server instrumentation or sampling, thus simplifying the parameterization of performance models. The benefit of this approach is further highlighted when utilization measurement is difficult or unreliable, such as in virtualized systems or for services controlled by third parties. Both experimental results from an industrial ERP system and sensitivity analyses based on simulations indicate that the proposed methods are often much more effective for service demand estimation than popular utilization based linear regression methods. In particular, the maximum likelihood approach is found to be typically two to five times more accurate than utilization based regression, thus suggesting that estimating service demands from response times can help in improving performance model parameterization. * Stephan Kraft is also affiliated with Queen'
Resource allocation in the cloud is usually driven by performance predictions, such as estimates of the future incoming load to the servers or of the quality-of-service (QoS) offered by applications to end users. In this context, characterizing web workload fluctuations in an accurate way is fundamental to understand how to provision cloud resources under time-varying traffic intensities. In this paper, we investigate the Markovian Arrival Processes (MAP) and the related MAP/MAP/1 queueing model as a tool for performance prediction of servers deployed in the cloud. MAPs are a special class of Markov models used as a compact description of the time-varying characteristics of workloads. In addition, MAPs can fit heavy-tail distributions, that are common in HTTP traffic, and can be easily integrated within analytical queueing models to efficiently predict system performance without simulating. By comparison with tracedriven simulation, we observe that existing techniques for MAP parameterization from HTTP log files often lead to inaccurate performance predictions. We then define a maximum likelihood method for fitting MAP parameters based on data commonly available in Apache log files, and a new technique to cope with batch arrivals, which are notoriously difficult to model accurately. Numerical experiments demonstrate the accuracy of our approach for performance prediction of web systems.
Abstract-Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly estimated from other measures. However, current estimators are often inaccurate in accounting for scheduling in multi-threaded application servers. To cope with this problem, we propose novel linear regression and maximum likelihood estimators. Our algorithms take as inputs response time and resource queue measurements and return estimates of CPU consumption for individual request types. Results on simulated and real application datasets indicate that our algorithms provide accurate estimates and can scale effectively with the threading levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.