In view of risks associated with the discharge of pharmaceuticals in the aquatic environment, the objective of this work was to assess the removal of paracetamol, salicylic acid and diclofenac from water by a microalgae-based treatment. For a comparison purpose, the growth and kinetic parameters for the removal of drugs were determined for three different microalgae strains, namely Chlorella sorokiniana, Chlorella vulgaris and Scenedesmus obliquus. It was found that the drugs removal efficiency by these strains was related to their growth. Comparing the three pharmaceuticals, the salicylic acid was the most efficiently removed, especially by S. obliquus (>93% batch culture, >99% semicontinuous culture) and C. sorokiniana (>73% batch culture, >93% semicontinuous culture). Contrarily, paracetamol was the most poorly removed, the maximum efficiencies being those attained by C. sorokiniana (>67% batch culture, >41% semicontinuous culture). On the other hand, diclofenac was efficiently removed only by S. obliquus (>98% batch culture, >79% semicontinuous culture). For the three considered drugs, C. vulgaris was the strain showing the lowest removal capacity. The large differences here revealed between microalgae strains regarding their removal capacity of pharmaceuticals, pointed to the strain selection as a key issue for a successful application in wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.