The main purpose of this survey paper is to review the field of convergence between the liquid-propellant rocketpropulsion and automatic-control disciplines. A comprehensive collection of academic works and some industrial developments are summarised and discussed, making the link to the current context of launcher reusability. The main control problem in liquid-propellant rocket engines (LPRE), the target of this survey, generally consists in tracking set-points in combustion-chamber pressure and mixture ratio, their main operating quantities. This goal is attained via the adjustment of flow-control valves while complying with operating constraints. Each aspect of control systems, ranging from modelling to the actual control techniques, is reviewed and subsequently related to the rest of aspects. The comparison of the different approaches points to the general use of linearised models about concrete operating points for deriving steady-state controllers, which in most cases are of PID type. Other more sophisticated approaches present in the literature, incorporating some nonlinear, hybrid or robust techniques, improve certain aspects of performance and robustness. Nevertheless, no fully nonlinear or hybrid frameworks, which may allow the control of a wider throttling domain, have been published. In addition, control during the thermally and structurally demanding transient phases is usually in open loop, and hence with low correction margins. This sort of control enhancements, probably together with more sophisticated monitoring architectures, would serve to extend the life of LPRE, a significant factor in their reusability. Therefore, this survey intends to draw a path for the future control design trends which will certainly be more suitable for reusable LPRE.
The current context of launchers reusability requires the improvement of control algorithms for their liquid-propellant rocket engines. Their transient phases are generally still performed in open loop. In this paper, it is aimed at enhancing the control performance and robustness during the fully continuous phase of the start-up transient of a generic gas-generator cycle. The main control goals concern end-state tracking in terms of combustion-chamber pressure and chambers mixture ratios, as well as the verification of a set of hard operational constraints. A controller based on a nonlinear preprocessor and on linear MPC (Model-Predictive Control) has been synthesised, making use of nonlinear state-space models of the engine. The former generates the full-state reference to be tracked while the latter achieves the aforementioned goals with sufficient accuracy and verifying constraints for the required pressure levels. Robustness considerations are included in the MPC algorithm via an epigraph formulation of the minimax robust optimisation problem, where a finite set of perturbation scenarios is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.