Breast cancer is the neoplasia with the highest incidence in women worldwide. Proteomics approaches have accelerated the discovery of diagnostic and prognostic biomarkers. Here, we compared the proteomic profiles of breast tumors versus non-tumoral tissues in order to identify modulated proteins, which could represent potential markers associated to clinical features. By two-dimensional electrophoresis, we detected 28 differentially expressed proteins. Among these, 21 proteins were up-regulated and 7 were down-regulated in tumors (p<0.05). Proteins were identified using LC/ESI-MS/MS tandem mass spectrometry. One protein was identified as glyoxalase 1 (GLO1), an enzyme involved in detoxification of methylglyoxal, a cytotoxic product of glycolysis. GLO1 overexpression was confirmed by western blot assays in paired normal and tumor breast tissues in clinical stages I-III, and by immunohistochemistry on tissue microarrays (TMA) comprising a cohort of 98 breast tumors and 20 healthy specimens. Results from TMA demonstrated that GLO1 is overexpressed in 79% of tumors. Interestingly, GLO1 up-regulation correlates with advanced tumor grade (p<0.05). These findings demonstrate the association of GLO1 overexpression with tumor grade and pointed out for additional studies to establish the importance of GLO1 in breast cancer.
Aberrant DNA methylation is a frequent epigenetic alteration in cancer cells that has emerged as a pivotal mechanism for tumorigenesis. Accordingly, novel therapies targeting the epigenome are being explored with the aim to restore normal DNA methylation patterns on oncogenes and tumor suppressor genes. A limited number of studies indicate that dietary compound resveratrol modulates DNA methylation of several cancer-related genes; however a complete view of changes in methylome by resveratrol has not been reported yet. In this study we performed a genome-wide survey of DNA methylation signatures in triple negative breast cancer cells exposed to resveratrol. Our data showed that resveratrol treatment for 24 h and 48 h decreased gene promoter hypermethylation and increased DNA hypomethylation. Of 2476 hypermethylated genes in control cells, 1,459 and 1,547 were differentially hypomethylated after 24 h and 48 h, respectively. Remarkably, resveratrol did not induce widespread non-specific DNA hyper- or hypomethylation as changes in methylation were found in only 12.5% of 27,728 CpG loci. Moreover, resveratrol restores the hypomethylated and hypermethylated status of key tumor suppressor genes and oncogenes, respectively. Importantly, the integrative analysis of methylome and transcriptome profiles in response to resveratrol showed that methylation alterations were concordant with changes in mRNA expression. Our findings reveal for the first time the impact of resveratrol on the methylome of breast cancer cells and identify novel potential targets for epigenetic therapy. We propose that resveratrol may be considered as a dietary epidrug as it may exert its anti-tumor activities by modifying the methylation status of cancer -related genes which deserves further in vivo characterization.
Neoadjuvant chemotherapy aims to improve the outcome of breast cancer patients, but only few would benefit from this treatment. Pathological complete response has been proposed as a surrogate marker for the prediction of long-term clinical benefits; however, 50%-85% patients have an unfavorable pathological complete response to chemotherapy. MicroRNAs are known biomarkers of breast cancer progression; nevertheless, their potential to identify patients with pathological complete response remains poorly understood. Here, we investigated whether a microRNA profile could be associated with pathological complete response in triple-negative breast cancer patients receiving 5-fluorouracil, adriamycin, cyclophosphamide-cisplatin/paclitaxel as a novel neoadjuvant chemotherapy. In the discovery cohort, the expression of 754 microRNAs was examined in tumors from 10 triple-negative breast cancer patients who achieved pathological complete response and 8 without pathological complete response using TaqMan Low-Density Arrays. Unsupervised hierarchical cluster analysis identified 11 microRNAs with significant differences between responder and no-responder patients (fold change ≥ 1.5; p < 0.05). The differential expression of miR-30a, miR-9-3p, miR-770, and miR-143-5p was validated in an independent group of 17 patients with or without pathological complete response. Moreover, Kaplan-Meier analysis showed that expression of these four microRNAs was associated with an increased disease-free survival. Gene ontology classification of predicted microRNA targets indicated that numerous genes are involved in pathways related to chemoresistance, such as vascular endothelial growth factor, focal adhesion kinase, WNT, ERbB, phosphoinositide 3-kinase, and AKT signaling. In summary, we identified a novel microRNA expression signature associated with pathological complete response in breast cancer. We propose that the four validated microRNAs could be used as molecular biomarkers of clinical response in triple-negative breast cancer patients with pathological complete response to neoadjuvant therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.