Abstr actBidirectional Recurrent Neural Networks (BiRNNs) have shown outstanding results on sequence-to-sequence learning tasks. This architecture becomes specially interesting for multimodal machine translation task, since BiRNNs can deal with images and text. On most translation systems the same word embedding is fed to both BiRNN units. In this paper, we present several experiments to enhance a baseline sequence-to-sequence system (Elliott et al., 2015), for example, by using double embeddings. These embeddings are trained on the forward and backward direction of the input sequence. Our system is trained, validated and tested on the Multi30K dataset (Elliott et al., 2016) in the context of the WMT 2016 Multimodal Translation Task. The obtained results show that the double-embedding approach performs significantly better than the traditional single-embedding one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.