In humans, low peak bone mass is a significant risk factor for osteoporosis. We report that LRP5, encoding the low-density lipoprotein receptor-related protein 5, affects bone mass accrual during growth. Mutations in LRP5 cause the autosomal recessive disorder osteoporosis-pseudoglioma syndrome (OPPG). We find that OPPG carriers have reduced bone mass when compared to age- and gender-matched controls. We demonstrate LRP5 expression by osteoblasts in situ and show that LRP5 can transduce Wnt signaling in vitro via the canonical pathway. We further show that a mutant-secreted form of LRP5 can reduce bone thickness in mouse calvarial explant cultures. These data indicate that Wnt-mediated signaling via LRP5 affects bone accrual during growth and is important for the establishment of peak bone mass.
Recently, there has been an increasing interest in the development and characterization of patient-derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histologic and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biologic studies, and personalized medicine strategies. This article summarizes the current state of the art in this field, including methodologic issues, available collections, practical applications, challenges and shortcomings, and future directions, and introduces a European consortium of PDX models.Significance: PDX models are increasingly used in translational cancer research. These models are useful for drug screening, biomarker development, and the preclinical evaluation of personalized medicine strategies. This review provides a timely overview of the key characteristics of PDX models and a detailed discussion of future directions in the field. Cancer Discov; 4(9); 998-1013.
Wnt/-catenin signaling has recently been suggested to be involved in bone biology. The precise role of this cascade in osteoblast differentiation was examined. We show that a Wnt autocrine loop mediates the induction of alkaline phosphatase and mineralization by BMP-2 in pre-osteoblastic cells.Introduction: Loss of function of LRP5 leads to osteoporosis (OPPG syndrome), and a specific point mutation in this same receptor results in high bone mass (HBM). Because LRP5 acts as a coreceptor for Wnt proteins, these findings suggest a crucial role for Wnt signaling in bone biology. Materials and Methods:We have investigated the involvement of the Wnt/LRP5 cascade in osteoblast function by using the pluripotent mesenchymal cell lines C3H10T1/2, C2C12, and ST2 and the osteoblast cell line MC3T3-E1. Transfection experiments were carried out with a number of elements of the Wnt/LRP5 pathway. Measuring osteoblast and adipocyte differentiation markers addressed the effect of this cascade on osteoblast differentiation. Results: In mesenchymal cells, only Wnt's capable of stabilizing -catenin induced the expression of alkaline phosphatase (ALP). Wnt3a-mediated ALP induction was inhibited by overexpression of either Xdd1, dickkopf 1 (dkk1), or LRP5⌬C, indicating that canonical -catenin signaling is responsible for this activity. The use of Noggin, a bone morphogenic protein (BMP) inhibitor, or cyclopamine, a Hedgehog inhibitor, revealed that the induction of ALP by Wnt is independent of these morphogenetic proteins and does not require de novo protein synthesis. In contrast, blocking Wnt/LRP5 signaling or protein synthesis inhibited the ability of both BMP-2 and Shh to induce ALP in mesenchymal cells. Moreover, BMP-2 enhanced Wnt1 and Wnt3a expression in our cells. In MC3T3-E1 cells, where endogenous ALP levels are maximal, antagonizing the Wnt/LRP5 pathway led to a decrease of ALP activity. In addition, overexpression of dkk1 reduced extracellular matrix mineralization in a BMP-2-dependent assay. Conclusions: Our data strongly suggest that the capacity of BMP-2 and Shh to induce ALP relies on Wnt expression and the Wnt/LRP5 signaling cascade. Moreover the effects of BMP-2 on extracellular matrix mineralization by osteoblasts are mediated, at least in part, by the induction of a Wnt autocrine/paracrine loop. These results may help to explain the phenotype of OPPG patients and HBM.
Patient-derived xenografts (PDXs) have emerged as an important platform to elucidate new treatments and biomarkers in oncology. PDX models are used to address clinically relevant questions, including the contribution of tumour heterogeneity to therapeutic responsiveness, the patterns of cancer evolutionary dynamics during tumour progression and under drug pressure, and the mechanisms of resistance to treatment. The ability of PDX models to predict clinical outcomes is being improved through mouse humanization strategies and implementation of co-clinical trials, within which patients and PDXs reciprocally inform therapeutic decisions. This Opinion article discusses aspects of PDX modelling that are relevant to these questions and highlights the merits of shared PDX resources to advance cancer medicine from the 6 perspective of EurOPDX, an international initiative devoted to PDX-based research.Response to anticancer therapies varies owing to the substantial molecular heterogeneity of human tumours and to poorly defined mechanisms of drug efficacy and resistance 1 . Immortalized cancer cell lines, either cultured in vitro or grown as xenografts, cannot interrogate the complexity of human tumours, and only provide determinate insights into human disease, as they are limited in number and diversity, and have been cultured on plastic over decades 2 .This disconnection in scale and biological accuracy contributes considerably to attrition in drug development [3][4][5] .Surgically derived clinical tumour samples that are implanted in mice (known as patient-derived xenografts (PDXs)) are expected to better inform therapeutic development strategies. As intact tissue -in which the tumour architecture and the relative proportion of cancer cells and stromal cells are both maintained -is directly implanted into recipient animals, the alignment with human disease is enhanced. More importantly, PDXs retain the idiosyncratic characteristics of different tumours from different patients; hence, they can effectively recapitulate the intra-tumour and inter-tumour heterogeneity that typifies human cancer 6-9 . 7 Exhaustive information on the key characteristics and the practical applications of PDXs can be found in recent reviews [10][11][12][13] . In this Opinion article, we discuss basic methodological concepts, as well as challenges and opportunities in developing "next-generation" models to improve the reach of PDXs as preclinical tools for in vivo studies (TABLE 1). We also elaborate on the merits of PDXs for exploring the intrinsic heterogeneity and subclonal genetic evolution of individual tumours, and discuss how this may influence therapeutic resistance. Finally, we examine the utility of PDXs in navigating complex variables in clinical decision-making, such as the discovery of predictive and prognostic biomarkers, and the categorization of genotype-drug response correlations in high-throughput formats. Being primarily co-authored by leading members of the EurOPDX Consortium (see Further information), we provide...
Uveal melanoma, the most common eye malignancy, causes severe visual morbidity and is fatal in approximately 50% of patients. Primary uveal melanoma can be cured by surgery or radiotherapy, but the metastatic disease is treatment refractory. To understand comprehensively uveal melanoma genetics, we conducted single-nucleotide polymorphism arrays and wholegenome sequencing on 12 primary uveal melanomas. We observed only approximately 2,000 predicted somatic single-nucleotide variants per tumor and low levels of aneuploidy. We did not observe an ultraviolet radiation DNA damage signature, but identifi ed SF3B1 mutations in three samples and a further 15 mutations in an extension cohort of 105 samples. SF3B1 mutations were associated with good prognosis and were rarely coincident with BAP1 mutations. SF3B1 encodes a component of the spliceosome, and RNA sequencing revealed that SF3B1 mutations were associated with differential alternative splicing of protein coding genes, including ABCC5 and UQCC , and of the long noncoding RNA CRNDE . SIGNIFICANCE:Our data show that despite its dismal prognosis, uveal melanoma is a relatively simple genetic disease characterized by recurrent chromosomal losses and gains and a low mutational burden. We show that SF3B1 is recurrently mutated in uveal melanoma, and the mutations are associated with aberrant alternative splicing. Cancer Discov; 3(10); 1122-9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.