Wnt/-catenin signaling has recently been suggested to be involved in bone biology. The precise role of this cascade in osteoblast differentiation was examined. We show that a Wnt autocrine loop mediates the induction of alkaline phosphatase and mineralization by BMP-2 in pre-osteoblastic cells.Introduction: Loss of function of LRP5 leads to osteoporosis (OPPG syndrome), and a specific point mutation in this same receptor results in high bone mass (HBM). Because LRP5 acts as a coreceptor for Wnt proteins, these findings suggest a crucial role for Wnt signaling in bone biology. Materials and Methods:We have investigated the involvement of the Wnt/LRP5 cascade in osteoblast function by using the pluripotent mesenchymal cell lines C3H10T1/2, C2C12, and ST2 and the osteoblast cell line MC3T3-E1. Transfection experiments were carried out with a number of elements of the Wnt/LRP5 pathway. Measuring osteoblast and adipocyte differentiation markers addressed the effect of this cascade on osteoblast differentiation. Results: In mesenchymal cells, only Wnt's capable of stabilizing -catenin induced the expression of alkaline phosphatase (ALP). Wnt3a-mediated ALP induction was inhibited by overexpression of either Xdd1, dickkopf 1 (dkk1), or LRP5⌬C, indicating that canonical -catenin signaling is responsible for this activity. The use of Noggin, a bone morphogenic protein (BMP) inhibitor, or cyclopamine, a Hedgehog inhibitor, revealed that the induction of ALP by Wnt is independent of these morphogenetic proteins and does not require de novo protein synthesis. In contrast, blocking Wnt/LRP5 signaling or protein synthesis inhibited the ability of both BMP-2 and Shh to induce ALP in mesenchymal cells. Moreover, BMP-2 enhanced Wnt1 and Wnt3a expression in our cells. In MC3T3-E1 cells, where endogenous ALP levels are maximal, antagonizing the Wnt/LRP5 pathway led to a decrease of ALP activity. In addition, overexpression of dkk1 reduced extracellular matrix mineralization in a BMP-2-dependent assay. Conclusions: Our data strongly suggest that the capacity of BMP-2 and Shh to induce ALP relies on Wnt expression and the Wnt/LRP5 signaling cascade. Moreover the effects of BMP-2 on extracellular matrix mineralization by osteoblasts are mediated, at least in part, by the induction of a Wnt autocrine/paracrine loop. These results may help to explain the phenotype of OPPG patients and HBM.
A large number of similarities have previously been noted between the blood and milk clotting phenomena [Jollès, P. (1975) Mol. Cell. Biochem. 7, 73–85; Jollès, P. & Henschen, A. (1982) Trends Biochem. Sci. 7, 325–328]: some analogous features have also been found between fibrinogen and k‐casein. In this connection, the effect of a natural and a synthetic peptide derived from k‐casein on platelet function was studied: the undecapeptide Met‐Ala‐Ile‐Pro‐Pro‐Lys‐Lys‐Asn‐Gln‐Asp‐Lys (residues 106 → 116 of cow k‐casein) inhibited both aggregation of ADP‐treated platelets and binding of 125I‐fibrinogen to ADP‐treated platelets: its behaviour was similar to that of the structurally related C‐terminal dodecapeptide of human fibrinogen γ‐chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.