Coiled tubing (CT) milling and cleanout interventions depend heavily on the circulation of fluids and debris throughout a wellbore. When these interventions are performed on lateral wells which are subhydrostatic or are not able to sustain a stable column of fluid during the operation, they pose unique challenges. This is mostly due to the inability of the well to support a column of fluid, which consequently causes circulation over long distances and along narrow annular spaces to be difficult or impossible, particularly when a thief zone is present. The many consequences of poor to nonexistent fluid circulation can be severe, ranging from poor hole cleaning and formation damage to inducing a stuck pipe scenario. Over the years, many mechanical and chemical solutions have been employed to improve fluid circulation in subhydrostatic wells, but each comes with its own set of challenges and can be costly to implement. Two methods commonly used today to improve debris removal from a low-pressure wellbore include the use of nitrogen and the creation of an underbalanced condition in the wellbore by flowing formation fluids. The former is expensive, time consuming, and requires advance bottomhole assembly (BHA) planning whereas the latter can lead to significant formation damage or a reduction in fracture conductivity through the removal of proppant from the near-wellbore area. A fiber- and particulate-laden degradable loss control system (LCS) is proposed as an improvement on the current techniques used to improve circulation in subhydrostatic wells. The LCS temporarily prevents losses to the reservoir and enables the circulation of debris out of the well. The system was applied to low-pressure wells in North America to demonstrate its effectiveness in addressing the reduction or loss of circulation throughout the wellbore and improving debris transport to surface.
Cleanouts and milling make up most of the common coiled tubing (CT) operations around the globe. The objective of each is to remove debris from a wellbore, such as sand, scale, cement, or fracture plugs, to promote an unobstructed flow path for fluids. For decades, operators and service companies have focused heavily on methods to optimize removal of debris through the development of specialized tools, fluids, techniques, and predictive models. These are coupled with wellsite equipment digital acquisition systems to capture CT behavior, pump rates, and chemical additive rates; very little attention has been given to the rates of the fluid and solids being returned to surface. The composition and quality of fluids being pumped into the well are often well characterized, and the pump rate is recorded digitally to the second. By contrast, information on the fluid being returned is frequently limited to intermittent, manual surveys of the flowback tank fluid level that often go unrecorded. Fluid samples are rarely analyzed, even by inexact measurements, to provide feedback to the predictive model. This results in a missed opportunity to optimize the operation as well as to recognize and respond to undesirable trends and actions in real time. This paper describes a simple digital acquisition system developed and implemented in the field to digitally record, plot, and monitor critical wellsite parameters including flowback rate, solids returns, annular velocities, and downhole Reynolds numbers. The system provides a real-time visual aid to observe the direct impact that operational decisions have on cleanout efficiency and the opportunity to correct and optimize the cleanout operation. Furthermore, the system offers the opportunity to rapidly recognize and respond to unexpected trends such as a gradual or sudden loss in return rate or a decrease of solids returns which could rapidly result in serious consequences such as a stuck-pipe situation.
Fishing, cleanouts, and milling constitute the most common coiled tubing (CT) operations on the coast of Louisiana. The objective of the operations is to remove obstructions from a wellbore and to promote an unobstructed flow path for fluid, either for injection or production. Sometimes, due to the nature, weight, or length of the fish, a straight fishing operation cannot be performed. In these cases, dressing and baiting the fish with CT before a fishing attempt is necessary. Considering previous experiences in the area, the operator wanted to remove common uncertainties that exist during CT operations including whether the correct force is transmitted from the surface, if the bottomhole assembly (BHA) is functioning correctly, and if the downhole motor is applying the correct amount of weight on bit for successful milling. This study describes how a real-time CT downhole measurement system optimized an intervention that required dressing and baiting the top of the fish (a stuck CT string) to enable the subsequent fishing operation. The risks involved with milling a fish inside an injector well with CT in deepwater conditions motivated the use of CT telemetry capable of providing real-time downhole parameters to operate the mill both safely and efficiently. The combination of conventional milling techniques and real-time downhole measurement capabilities enabled rapid response and adjustments to the actual downhole conditions throughout the operation, as the combination system developed and confirmed the tubing force module simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.