Gellan gum is a biopolymer widely used in the food, pharmaceutical, chemical, and agrochemical fields. Its ability to form a strong gel makes it possible to produce fluid gels. These materials present an apparent yield stress, but its value could be influenced by the wall‐slip effect when performing the rheological measurements by which it is determined. In this work, the influence of the measuring surface and gap on flow behavior was first determined. The tests revealed the need to use geometries with rough surfaces, although the sample thickness using a parallel plate has no influence. Subsequently, the value of yield stress was obtained by means of creep tests (found to be 4.3 Pa), and, finally, the effect of wall slip on the dynamic viscoelastic behavior was assessed. There was an influence on the extension of the linear viscoelastic region, but not on the viscoelastic functions of the mechanical spectra. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 46900.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.