International audienceThe paper addresses the flight control of a quad-rotor subject to two dimensional unknown static/varying wind disturbances. A model separation is proposed to simplify the control of the six-degrees-of-freedom (6DOF) nonlinear dynamics of the flying robot. Such approach allows to deal with quad-rotor's 3D-motion via two subsystems: dynamic (altitude and MAV-relative forward velocity) and kinematic (nonholonomic-like navigation) subsystems. In terms of control, a hierarchical control is used as the overall control structure to stabilize the kinematic underactuaded subsystem. A control strategy based on sliding-mode and adaptive control techniques is proposed to deal with slow and fast time-varying wind conditions, respectively. This choice not only provides well tracking control but also improves the estimation of unknown disturbance. The backstepping technique is used to stabilize the inner-loop heading dynamics, such recursive design takes into account a constrained heading rate. Promising simulations results show the validity of the proposed control strategy while tracking a time-parameterized straight-line and sinusoidal trajectory
International audienceNowadays, the chattering problem in sliding mode control is one of the most important points to consider in real-time applications. To address this problem, a real-time robust altitude control scheme is proposed for the efficient performance of a Quad-rotor aircraft system using a continuous sliding mode control. The sensing of altitude measurement sensing is performed by a pressure sensor in order to obtain a robust altitude control of the vehicle in hovering mode both indoor and outdoor. The altitude measurement has the advantage of introducing this state information directly in the closed loop control which should be very useful for achieving robust stabilization of the altitude control. Accordingly, we propose a sliding mode control strategy without chattering. The sliding mode control proposed removes the chattering phenomenon by replacing a sign function with a high-slope saturation function. The control algorithm is derived from the Lyapunov stability theorem. Moreover, we have assumed that the actuators are able to respond quickly and accurately and we have not enforced limits on the control signals for a real-time application. Finally, to verify the satisfactory performance of proposed nonlinear control law, several simulations and experimental results of the Chattering-free sliding mode control for the Quad-rotor aircraft in the presence of bounded disturbances are presented
A path generator is proposed for a fixed-wing Unmaned Aereal Vehicle (UAV). Assuming that the vehicle maintain a constant altitude, and airspeed, and that the UAV is constrained by a turning rate. The Dubins paths serve as a strategy to find the shortest path for the non-holonomic model of the UAV. Dubins paths consist of three path segments which are based on straight lines or arcs of circle of a given radius. The Dubins path generation is combined with a nonlinear Lypaunov-based path-following control. Finally we present a complete simulation environment in which the path generator and path following strategy are validated. As an example of application we propose the scenario in which a missing person is located in some known area and we use the path generator along with this path-following strategy applied to the fixed wing UAV to search and find this person.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.