Zooplankton plays a pivotal role in marine ecosystems and the characterisation of its biodiversity still represents a challenge for marine ecologists. In this study, mesozooplankton composition from 46 samples collected in summer along the western Adriatic Sea, was retrieved by DNA metabarcoding analysis. For the first time, the highly variable fragments of the mtDNA COI and the V9 region of 18S rRNA genes were used in a combined matrix to compile an inventory of mesozooplankton at basin scale. The number of sequences retrieved after quality filtering were 824,148 and 223,273 for COI and 18S (V9), respectively. The taxonomical assignment against reference sequences, using 95% (for COI) and 97% (for 18S) similarity thresholds, recovered 234 taxa. NMDS plots and cluster analysis divided coastal from offshore samples and the most representative species of these clusters were distributed according to the dominant surface current pattern of the Adriatic for the summer period. For selected sampling sites, mesozooplankton species were also identified under a stereo microscope providing insights on the strength and weakness of the two approaches. In addition, DNA metabarcoding was shown to be helpful for the monitoring of non-indigenous marine metazoans and spawning areas of commercial fish species. We defined pros and cons of applying this approach at basin scale and the benefits of combining the datasets from two genetic markers.
The marine environment presents particular challenges for our understanding of the factors that determine gene flow and consequent population structure. For marine fish, various aspects of life history have been considered important in an environment with few physical barriers, but dominated by current patterns, often varying with depth. These factors include the abundance and longevity of larval stages, typically more susceptible to movement along current paths. It also includes adult body size, fecundity and longevity with 'r-selected' species typically thought capable of greater gene flow and consequent panmixia. Here we investigate the population genetics of the orange roughy (Hoplostethus atlanticus), a clearly 'K-selected' species with habitat dependence on sea mounts for spawning, relatively large body size, a brief larval stage and relatively low fecundity. We used 14 polymorphic microsatellite loci to test the hypothesis that these characteristics will result in philopatry and genetic structure in the Atlantic Ocean. We discuss possible evolutionary mechanisms that could explain the results, which show the opposite pattern, with effective panmixia across thousands of kilometres in the North Atlantic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.