Recent advances in Indoor Positioning Systems led to a business interest in those applications and services where a precise localization is crucial. Wi-Fi fingerprinting based on Machine Learning and Expert Systems are commonly used in the literature. They compare a current fingerprint to a database of fingerprints, and then return the most similar one/ones according to: 1) a distance function, 2) a data representation method for Received Signal Strength values, and 3) a thresholding strategy. However, most of the previous works simply use the Euclidean distance with the raw unprocessed data.There is not any previous work that studies which is the best distance function, which is the best way of representing the data and which is the effect of applying thresholding.In this paper, we present a comprehensive study using 51 distance metrics, 4 alternatives to represent the raw data (2 of them proposed by us), a thresholding based on the RSS values and the public UJIIndoorLoc database. The results shown in this paper demonstrates that researchers and developers should take into account the conclusions arisen in this work in order to improve the accuracy of their systems. The IPSs based on k-NN are improved by just selecting the appropriate configuration (mainly distance function and data representation). In the best case, 13-NN with Sørensen distance and the powed data representation, the error in determining the place (building and floor) Preprint submitted to ElsevierNovember 23, 2015 has been reduced in more than a 50% and the positioning accuracy has been increased in 1.7 meters with respect to the 1-NN with Euclidean distance and raw data commonly used in the literature. Moreover, our experiments also demonstrates that thresholdingshould not be applied in multi-building and multi-floor environments
Abstract:The holy grail of smart cities is an integrated, sustainable approach to improve the efficiency of the city's operations and the quality of life of citizens. At the heart of this vision is the citizen, who is the primary beneficiary of smart city initiatives, either directly or indirectly. Despite the recent surge of research and smart cities initiatives in practice, there are still a number of challenges to overcome in realizing this vision. This position paper points out six citizen-related challenges: the engagement of citizens, the improvement of citizens' data literacy, the pairing of quantitative and qualitative data, the need for open standards, the development of personal services, and the development of persuasive interfaces. The article furthermore advocates the use of methods and techniques from GIScience to tackle these challenges, and presents the concept of an Open City Toolkit as a way of transferring insights and solutions from GIScience to smart cities.
Wi-Fi fingerprinting is a well-known technique used for indoor positioning. It relies on a pattern recognition method that compares the captured operational fingerprint with a set of previously collected reference samples (radio map) using a similarity function. The matching algorithms suffer from a scalability problem in large deployments with a huge density of fingerprints, where the number of reference samples in the radio map is prohibitively large. This paper presents a comprehensive comparative study of existing methods to reduce the complexity and size of the radio map used at the operational stage. Our empirical results show that most of the methods reduce the computational burden at the expense of a degraded accuracy. Among the studied methods, only k-means, affinity propagation, and the rules based on the strongest access point properly balance the positioning accuracy and computational time. In addition to the comparative results, this paper also introduces a new evaluation framework with multiple datasets, aiming at getting more general results and contributing to a better reproducibility of new proposed solutions in the future.
The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features.
The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and the Web of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.