NF-B inducing kinase (NIK) is required for osteoclastogenesis in response to pathologic stimuli, and its loss leads to functional blockade of both alternative and classical NF-B caused by cytoplasmic retention by p100. We now show that deletion of p100 restores the capacity of NIK-deficient osteoclast (OC) precursors to differentiate and normalizes RelB and p65 signaling. Differentiation of NIK؊/؊ precursors is also restored by overexpression of RelB, but not p65. Additionally, RelB؊/؊ precursors fail to form OCs in culture, and this defect is rescued by re-expression of RelB, but not by overexpression of p65. To further support the role of RelB in OCs, we challenged RelB؊/؊ mice with TNF-␣ in vivo and found a diminished osteoclastogenic response. We then examined tumor-induced osteolysis in both RelB؊/؊ and NIK؊/؊ mice by using the B16 melanoma model. Growth of tumor cells in the bone marrow was similar to WT controls, but the absence of either RelB or NIK completely blocked the tumor-induced loss of trabecular bone. Thus, the alternative NF-B pathway, culminating in activation of RelB, has a key and specific role in the differentiation of OCs that cannot be compensated for by p65.bone ͉ metastasis ͉ receptor activator of NF-B ligand
Osteoclasts (OCs) function to reabsorb bone and are responsible for the bone loss associated with inflammatory arthritis and osteoporosis. OC numbers are elevated in most disorders of accelerated bone destruction, reflecting altered rates of precursor differentiation and apoptosis. Both of these processes are regulated by the JNK family of MAP kinases. In this study, we have demonstrated that the NF-κB subunit RelA/p65 inhibits JNKmediated apoptosis during a critical period of commitment to the OC phenotype in response to the cytokine RANKL. This RelA/p65-mediated arrest of cell death led to enhanced OC differentiation. Hence, Rela -/-OC precursors displayed prolonged JNK activation in response to RANKL, and this was accompanied by an increase in cell death that prevented efficient differentiation. Although complete blockade of JNK activity inhibits osteoclastogenesis, both short-term blockade in RelA-deficient cultures and suppression of the downstream mediator, Bid rescued apoptosis and differentiation. These antiapoptotic effects were RelA specific, as overexpression of RelA, but not RelB, blocked apoptosis and rescued differentiation in Rela -/-precursors. Thus, RelA blocks a RANKL-induced, apoptotic JNK-Bid pathway, thereby promoting OC differentiation. Consistent with this, mice lacking RelA/p65 in the hematopoietic compartment were shown to have a deficient osteoclastogenic response to RANKL and were protected from arthritis-induced osteolysis. IntroductionOsteoclasts (OCs) are multinucleated cells derived from myeloid bone marrow progenitors that express RANK, the receptor for the key osteoclastogenic cytokine RANKL (1). Increased OC formation and activity is observed in many osteopenic disorders, including postmenopausal osteoporosis, lytic bone metastasis, and rheumatoid arthritis, and leads to pain and structural instability. Osteoblast lineage cells express a membrane-bound form of RANKL, a member of the TNF cytokine family. Like other members of the TNF receptor superfamily, RANK strongly activates the NF-κB pathway.In mammals, the NF-κB family has 5 members: RelA/p65, RelB, c-Rel, NF-κB1/p50, and NF-κB2/p52 (2). In the canonical NF-κB pathway, ligation of RANK activates the inhibitor of IκB kinase (IKK) complex, which phosphorylates NF-κB-associated IκBα, leading to its ubiquitination and proteosomal degradation. These events release NF-κB dimers containing RelA and c-Rel in the cytosol, allowing them to translocate into the nucleus where they enhance transcription of target genes. In the alternative NF-κB pathway, NF-κB-inducing kinase (NIK) and IKKα target p100 for ubiquitination and processing, thereby allowing nuclear translocation of predominantly RelB-containing dimers.The importance of NF-κB in osteoclastogenesis has been highlighted by several mouse models. Mice lacking both NF-κB1 and NF-κB2 have severe osteopetrosis with complete absence of OCs
Age-related bone loss is characterized by decreased osteoblast activity, possibly related to the reduction of energy production. Carnitine promotes energy availability and its concentration declines with age; Therefore, two Carnitine derivatives, L-carnitine fumarate (LC) and isovaleryl L-carnitine fumarate (Iso-V-LC), have been tested on several parameters of human osteoblasts in vitro. Both compounds significantly increased osteoblast activity, but the new compound Iso-V-LC was more efficient than LC at lower concentrations. They both significantly enhanced cell proliferation, [3H]-proline incorporation and the expression of collagen type I (COLLI), and the bone sialoproteins (BSPs) and osteopontin (OPN). The percentage of alkaline phosphatase (ALP)-positive cells and the secretion of osteocalcin were not modified by LC and Iso-V-LC. Both molecules increased the formation of mineralized nodules, but Iso-V-LC reached the maximum effect at a concentration 10-fold lower than that of LC. Furthermore, we showed that insulin-like growth factor (IGF)-I and IGF-II mRNA levels were not modified by the treatment. However, the two compounds induced an increase of insulin-like growth factor binding protein (IGFBP)-3 and a decrease of IGFBP-5 in both osteoblast lysates and the extracellular matrix (ECM). In conclusion these data suggest that carnitine and, in particular, its new derivative, Iso-V-LC supplementation in the elderly may stimulate osteoblast activity and decrease age-related bone loss.
Leptin, a cytokine-like hormone secreted mainly by adipocytes, regulates various pathways centered on food intake and energy expenditure, including insulin sensitivity, fertility, immune system, and bone metabolism. Here, using zinc finger nuclease technology, we created the first leptin knockout rat. Homozygous leptin null rats are obese with significantly higher serum cholesterol, triglyceride, and insulin levels than wild-type controls. Neither gender produced offspring despite of repeated attempts. The leptin knockout rats also have depressed immune system. In addition, examination by microcomputed tomography of the femurs of the leptin null rats shows a significant increase in both trabecular bone mineral density and bone volume of the femur compared with wild-type littermates. Our model should be useful for many different fields of studies, such as obesity, diabetes, and bone metabolism-related illnesses.
Twisted gastrulation (Tsg) is a secreted glycoprotein that binds bone morphogenetic protein-2 (BMP-2) and BMP-4 and can display both BMP agonist and antagonist functions. Tsg acts as a BMP agonist in chondrocytes, but its expression and actions on the differentiation of cells of the osteoblastic lineage are not known. We investigated the effects of Tsg overexpression by transducing murine ST-2 stromal and MC3T3 cells with a retroviral vector where Tsg is under control of the cytomegalovirus promoter and compared them to cells transduced with the parental vector alone. ST-2 cells were cultured in osteoblastic differentiating conditions in the presence or absence of BMP-2. Tsg overexpression precluded the appearance of mineralized nodules induced by BMP-2, led to a delay in the expression of osteoblastic gene markers, and decreased the responsiveness of ST-2 differentiating cells to PTH. BMP-2 induced the phosphorylation of signaling mothers against decapentaplegic-1/5/8, but not ERK, c-Jun N-terminal kinase, and p38. ST-2 cells overexpressing Tsg displayed an inhibition of BMP/signaling mother against decapentaplegic signaling. Tsg action was specific to BMP, because Tsg overexpression did not affect TGF-beta or Wnt/beta-catenin signaling pathways. Tsg also opposed MC3T3 cell differentiation and the expression of a mature osteoblast phenotype. In conclusion, Tsg overexpression inhibits BMP action in stromal and preosteoblastic cells and, accordingly, arrests their differentiation toward the osteoblastic pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.