Nowadays it is well accepted that in Parkinson's disease (PD), the neurodegenerative process occurs in stages and that damage to other areas precedes the neuronal loss in the substantia nigra pars compacta, which is considered a pathophysiological hallmark of PD. This heterogeneous and progressive neurodegeneration may explain the diverse symptomatology of the disease, including motor and non-motor alterations. In PD, one of the first areas undergoing degeneration is the locus coeruleus (LC). This noradrenergic nucleus provides extensive innervation throughout the brain and plays a fundamental neuromodulator role, participating in stress responses, emotional memory, and control of motor, sensory, and autonomic functions. Early in the disease, LC neurons suffer modifications that can condition the effectiveness of pharmacological treatments, and importantly, can lead to the appearance of common non-motor symptomatology. The noradrenergic system also exerts anti-inflammatory and neuroprotective effect on the dopaminergic degeneration and noradrenergic damage can consequently condition the progress of the disease. From the pharmacological point of view, it is also important to understand how the noradrenergic system performs in PD, since noradrenergic medication is often used in these patients, and drug interactions can take place when combining them with the gold standard drug therapy in PD, L-3,4-dihydroxyphenylalanine (L-DOPA). This review provides an overview about the functional status of the noradrenergic system in PD and its contribution to the efficacy of pharmacologicalbased treatments. Based on preclinical and clinical publications, a special attention will be dedicated to the most prevalent non-motor symptoms of the disease.
Background and Purpose l‐DOPA‐induced dyskinesia (LID) is considered a major complication in the treatment of Parkinson's disease (PD). Buspirone (5‐HT1A partial agonist) have shown promising results in the treatment of PD and LID, however no 5‐HT‐based treatment has been approved in PD. The present study was aimed to investigate how the substantia nigra pars reticulata (SNr) is affected by buspirone and whether it is a good target to study 5‐HT antidyskinetic treatments. Experimental Approach Buspirone was studied using in vivo single‐unit, electrocorticogram, local field potential recordings along with microdialysis and immunohistochemistry in naïve/sham, 6‐hydroxydopamine (6‐OHDA)‐lesioned or 6‐OHDA‐lesioned and l‐DOPA‐treated (6‐OHDA/l‐DOPA) rats. Key Results Local buspirone inhibited SNr neuron activity in all groups. However, systemic buspirone reduced burst activity in 6‐OHDA‐lesioned rats (with or without l‐DOPA treatment), whereas 8‐OH‐DPAT, a full 5‐HT1A agonist induced larger inhibitory effects in sham animals. Neither buspirone nor 8‐OH‐DPAT markedly modified the low‐frequency oscillatory activity in the SNr or synchronization within the SNr with the cortex. In addition, local perfusion of buspirone increased GABA and glutamate release in the SNr of naïve and 6‐OHDA‐lesioned rats but no effect in 6‐OHDA/l‐DOPA rats. In the 6‐OHDA/l‐DOPA group, increased 5‐HT transporter and decreased 5‐HT1A receptor expression was found. Conclusions and Implications The effects of buspirone in SNr are influenced by dopamine loss and l‐DOPA treatment. The present results suggest that the regulation of burst activity of the SNr induced by DA loss may be a good target to test new drugs for the treatment of PD and LID.
Author contributions L.U. and C.M. conceived the study, designed the experiments, and drafted the final version of the manuscript. S.V.S. performed all the experiments, carried out data quantification and analysis, prepared the figures, and contributed to the first draft. A. A. and C. M. collaborated in the optogenetic experiments. C.R. and H.B. contributed to the immunostaining experiment design. C.M. revised the data analysis. S.V.S., C.M., J.V.L., A.S., and L.U. interpreted the results. All authors reviewed and edited the manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.