Tumor mutational burden (TMB) is a numeric index that expresses the number of mutations per megabase (muts/Mb) harbored by tumor cells in a neoplasm. TMB can be determined using different approaches based on next-generation sequencing. In the case of high values, it indicates a potential response to immunotherapy. In this systematic review, we assessed the potential predictive role of high-TMB in pancreatic ductal adenocarcinoma (PDAC), as well as the histo-molecular features of high-TMB PDAC. High-TMB appeared as a rare but not-negligible molecular feature in PDAC, being present in about 1.1% of cases. This genetic condition was closely associated with mucinous/colloid and medullary histology (p < 0.01). PDAC with high-TMB frequently harbored other actionable alterations, with microsatellite instability/defective mismatch repair as the most common. Immunotherapy has shown promising results in high-TMB PDAC, but the sample size of high-TMB PDAC treated so far is quite small. This study highlights interesting peculiarities of PDAC harboring high-TMB and may represent a reliable starting point for the assessment of TMB in the clinical management of patients affected by pancreatic cancer.
In the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, pathologists can be exposed to infection handling surgical specimens. Guidelines related to safety procedures in the laboratory have been released. However, there is a lack of studies performed on biopsy and surgical resection specimens. Here we report the detection of SARS-CoV-2 in formalin-fixed paraffin-embedded samples from surgical resection of tongue squamous cell carcinoma of a patient who developed COVID-19 postsurgery. RNA of SARS-CoV-2 strain was detected in the tumour and the normal submandibular gland samples using real-time PCR-based assay. No viral RNA was found in metastatic and reactive lymph nodes. We demonstrated that SARS-CoV-2 RNA can be detected in routine histopathological samples even before COVID-19 disease development. These findings may give important information on the possible sites of infection or virus reservoir, and highlight the necessity of proper handling and fixation before sample processing.
Background The breast cancer genome dynamically evolves during malignant progression and recurrence. We investigated the genomic profiles of primary early-stage breast cancers and matched relapses to elucidate the molecular underpinnings of the metastatic process, focusing on potentially actionable alterations in the recurrences. Methods A mono-institutional cohort of 128 patients with breast cancers (n = 68 luminal B HER2, n = 6 luminal B HER2+, n = 1 HER2+ non-luminal, n = 56 triple negative) and at least one recurrence in a timeframe of 17 years was evaluated. Next-generation sequencing comprehensive genomic profiling was performed on 289 formalin-fixed paraffin-embedded (FFPE) samples, including primary tumors and matched relapses. Correlations of genomic aberrations with clinicopathologic factors and time to breast cancer relapse were analyzed. Results Genomic data were available for 188 of 289 FFPE samples that achieved the sequencing quality parameters (failure rate 34.9%), including 106 primary tumors and 82 relapses. All primary and relapse samples harbored at least one genomic alteration, with a median number of six alterations per sample (range 1–16). The most frequent somatic genomic alterations were mutations of TP53 (primary tumors = 49%, relapses = 49%) and PIK3CA (primary tumors = 33%, relapses = 30%). Distinctive genomic alterations of primary tumors were significantly associated with molecular subtypes. TP53, PIK3R1, and NF1 somatic alterations were more frequently detected in triple negative tumors (p value < 0.05); CCND1, FGF3, and FGFR1 copy number gains were recurrently identified in luminal cases (p value < 0.05). Moreover, TP53 mutations and MYC amplification were significantly and independently associated with a shorter time to relapse (p value < 0.05). Molecular subtype changes between primary tumors and relapses were seen in 10 of 128 (7.8%) cases. Most driver genomic alterations (55.8%) were shared between primary tumors and matched recurrences. However, in 39 of 61 cases (63.9%), additional private alterations were detected in the relapse samples only, including 12 patients with potentially actionable aberrations. Conclusions Specific genomic aberrations of primary breast cancers were associated with time to relapse. Primary tumors and matched recurrences showed a core of shared driver genomic aberrations but private actionable alterations have been identified in the relapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.