We survey the underlying theory behind the large-scale and linear scaling DFT code, Conquest, which shows excellent parallel scaling and can be applied to thousands of atoms with diagonalisation, and millions of atoms with linear scaling. We give details of the representation of the density matrix and the approach to finding the electronic ground state, and discuss the implementation of molecular dynamics with linear scaling. We give an overview of the performance of the code, focussing in particular on the parallel scaling, and provide examples of recent developments and applications.
Here, using self-consistent ab initio lattice dynamical calculations that go beyond the quasiharmonic approximation, we show that the high-pressure high-temperature bcc-Fe phase is dynamically stable. In this treatment the temperature-dependent phonon spectra are derived by exciting all the lattice vibrations, in which the phonon-phonon interactions are considered. The high-pressure and high-temperature bcc-Fe phase shows standard bcc-type phonon dispersion curves except for the transverse branch, which is overdamped along the high symmetry direction Γ-N, at temperatures below 4,500 K. When lowering the temperature down to a critical value T C , the lattice instability of the bcc structure is reached. The pressure dependence of this critical temperature is studied at conditions relevant for the Earth's core.ab initio | anharmonic lattice dynamics | high pressure and high temperature | inner core
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.