Optical coherence tomography (OCT) has become the leading diagnostic tool in modern ophthalmology. We are interested here in developing a support tool for the segmentation of retina layers. The proposed method relies on graph theory and geodesic distance. As each retina layer is characterised by different features, the proposed method interleaves various gradients during detection, such as horizontal and vertical gradients or open-closed gradients. The method was tested on a dataset of 750 OCT B-Scan Spectralis provided by the Ophthalmology Department of the County Emergency Hospital Cluj-Napoca. The method has smaller signed error on layers B1, B7 and B8, with the highest value of 0.43 pixels. The average value of signed error on all layers is −1.99 ± 1.14 px. The average value for mean absolute error is 2.60 ± 0.95 px. Since the target is a support tool for the human agent, the ophthalmologist can intervene after each automatic step. Human intervention includes validation or fine tuning of the automatic segmentation. In line with design criteria advocated by explainable artificial intelligence (XAI) and human-centered AI, this approach gives more control and transparency as well as more of a global perspective on the segmentation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.