(1) Objective: This review paper aims to discuss multiple aspects of cerebral venous thrombosis (CVT), including epidemiology, etiology, pathophysiology, and clinical presentation. Different neuroimaging methods for diagnosis of CVT, such as computer tomography CT/CT Venography (CTV), and Magnetic Resonance Imaging (MRI)/MR Venography (MRV) will be presented. (2) Methods: A literature analysis using PubMed and the MEDLINE sub-engine was done using the terms: cerebral venous thrombosis, thrombophilia, and imaging. Different studies concerning risk factors, clinical picture, and imaging signs of patients with CVT were examined. (3) Results: At least one risk factor can be identified in 85% of CVT cases. Searching for a thrombophilic state should be realized for patients with CVT who present a high pretest probability of severe thrombophilia. Two pathophysiological mechanisms contribute to their highly variable clinical presentation: augmentation of venular and capillary pressure, and diminution of cerebrospinal fluid absorption. The clinical spectrum of CVT is frequently non-specific and presents a high level of clinical suspicion. Four major syndromes have been described: isolated intracranial hypertension, seizures, focal neurological abnormalities, and encephalopathy. Cavernous sinus thrombosis is the single CVT that presents a characteristic clinical syndrome. Non-enhanced CT (NECT) of the Head is the most frequently performed imaging study in the emergency department. Features of CVT on NECT can be divided into direct signs (demonstration of dense venous clot within a cerebral vein or a cerebral venous sinus), and more frequently indirect signs (such as cerebral edema, or cerebral venous infarct). CVT diagnosis is confirmed with CTV, directly detecting the venous clot as a filling defect, or MRI/MRV, which also realizes a better description of parenchymal abnormalities. (4) Conclusions: CVT is a relatively rare disorder in the general population and is frequently misdiagnosed upon initial examination. The knowledge of wide clinical aspects and imaging signs will be essential in providing a timely diagnosis.
Purpose The constitutive elements of the metabolic syndrome (MetS) are linked with both non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease. Controlled attenuation parameter (CAP), and vibration controlled transient elastography (VCTE), are able to detect and quantify NAFLD, while conventional and two-dimensional speckle tracking echocardiography (2D-STE) is capable to identify subclinical changes in cardiac function. We wanted to evaluate whether there is any correspondence between left ventricular (LV) diastolic dysfunction and different degrees of liver steatosis and fibrosis in MetS subjects with NAFLD. Patients and Methods A total of 150 adult subjects having MetS and a normal left ventricular (LV) systolic function were recorded in the study, while 150 age- and sex- matched adults without MetS were enrolled as controls. NAFLD was established by VCTE and CAP. The left heart systolic and diastolic function was evaluated by conventional and 2D-ST echocardiography. Left atrial (LA) stiffness was calculated as the ratio between the E/A ratio and the LA reservoir-strain. Results In univariate regression analysis, the variables associated with LV diastolic dysfunction in MetS patients were: liver steatosis grade ≥2, liver fibrosis grade ≥2, the longitudinal LA peak strain during the reservoir phase, the LA strain rate during ventricular contraction and the LA stiffness. In multivariate logistic regression, two variables were selected as independent predictors of LV diastolic dysfunction, namely the liver stiffness (P=0.0003) and the LA stiffness (P<0.0001). LA stiffness predicted subclinical LV diastolic dysfunction in MetS patients with a sensitivity of 45% and a specificity of 96% when using a cut-off value >0.38, and was significantly correlated with liver steatosis stage ≥2 and liver fibrosis stage ≥2. Conclusion The present study confirms the association between liver stiffness, LA stiffness and LV diastolic dysfunction in MetS patients. Our study suggests that liver elastography and 2D-STE should become habitual assessments in MetS patients.
Background Patients who have transient ischemic attacks (TIA) often suffer from asymptomatic and paroxysmal atrial fibrillation (AF). Due to the fact that AF is located in the atria, we sought to determine whether abnormalities in left atrial (LA) structure and function could help identify the cardioembolic cause of TIA in patients with sinus rhythm but with documented episodes of paroxysmal AF. Methods The research included 190 individuals with TIA and classified them into two groups based on the presence (group I) or absence (group II) of confirmed paroxysmal AF. The diagnosis of paroxysmal AF was established by an assessment of medical records. To prevent assessing atrial stunning, cardiac ultrasonography was conducted in sinus rhythm at least 14 days following the initiation the TIA. Results The results indicated that patients in group I were older, more often female, had a history of stroke or TIA, and had a higher CHA2DS2-VASc score. Additionally, they exhibited increased LA volumes, a decreased LA emptying fraction, and markedly altered LA deformation patterns. Three factors were found as being independently associated with paroxysmal AF using multivariate logistic regression: age, LA reservoir strain, and LA emptying fraction (P<0.0001). The variables had as cut-off values: age >55 years, LA reservoir strain<−17%, and LA emptying fraction <51%. Conclusion The current research establishes that LA strains are independently associated with paroxysmal AF in patients with TIA and may aid in determining the cardioembolic origin of these events. Our findings have considerable clinical implications because, until now, LA 2D-STE was not included in the usual evaluation of TIA patients, but it may be the ideal next step in this regard. Funding Acknowledgement Type of funding sources: None.
Purpose Atrial fibrillation (AF) and diabetes mellitus (DM) are common pathogenic diseases. Diabetes is an independent risk factor for AF, and coexisting AF is a risk factor for the diabetic pa-tient’s progression. The purpose of this study was to see if two-dimensional-speckle tracking echocardiography (2D-STE) might provide valuable criteria for determining the risk of AF in diabetic patients. Patients and Methods This retrospective study compared 30 adult diabetic patients with documented paroxysmal atrial fibrillation (PAF) with 30 age- and sex-matched diabetic patients without PAF. Inclusion criteria were: age ≥18 years, sinus rhythm, diabetes mellitus type 2, and the ability to sign the informed consent. Exclusion criteria included: moderate or severe valvular disease, previous myocardial infarction, left ventricular ejection fraction (LVEF) <50%, congenital heart disease, a history of cardiac surgery, paced atrial or ventricular rhythm, inadequate echocardiography imaging. The medical history, clinical, biochemical data and the results of the transthoracic cardiac ultrasound examination were registered during their evaluation at the outpatients cardiology clinics. Results The mean age of the patients was 62.5±1.7 years, 60% were men. Diabetic patients who experienced PAF episodes demonstrated significantly impaired left atrial (LA) deformation patterns, with decreased LA strains and increased LA stiffness (p < 0.05). Conclusion The present study demonstrates that LA strains and LA stiffness are significantly associated with the occurrence of PAF in diabetic patients. As 2D-STE of the LA is more sensitive than routine echocardiographic examination, it should be performed in patients suspected of being suffering from PAF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.