We present new classes of exact solutions with noncommutative symmetries constructed in vacuum Einstein gravity (in general, with nonzero cosmological constant), five dimensional (5D) gravity and (anti) de Sitter gauge gravity. Such solutions are generated by anholonomic frame transforms and parametrized by generic off-diagonal metrics. For certain particular cases, the new classes of metrics have explicit limits with Killing symmetries but, in general, they may be characterized by certain anholonomic noncommutative matrix geometries. We argue that different classes of noncommutative symmetries can be induced by exact solutions of the field equations in 'commutative' gravity modeled by a corresponding moving real and complex frame geometry. We analyze two classes of black ellipsoid solutions (in the vacuum case and with cosmological constant) in 4D gravity and construct the analytic extensions of metrics for certain classes of associated frames with complex valued coefficients. The third class of solutions describes 5D wormholes which can be extended to complex metrics in complex gravity models defined by noncommutative geometric structures. The anholonomic noncommutative symmetries of such objects are analyzed. We also present a descriptive account how the Einstein gravity can be related to gauge models of gravity and their noncommutative extensions and discuss such constructions in relation to the Seiberg-Witten map for the gauge gravity. Finally, we consider a formalism of vielbeins deformations subjected to noncommutative symmetries in order to generate solutions for noncommutative gravity models with Moyal (star) product.
We review the current status of Finsler-Lagrange geometry and generalizations. The goal is to aid non-experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kähler geometry and geometric mechanics how they could perform their results in order to be accepted by the community of "orthodox" physicists.Although the bulk of former models of Finsler-Lagrange spaces where elaborated on tangent bundles, the surprising result advocated in our works is that such locally anisotropic structures can be modelled equivalently on Riemann-Cartan spaces, even as exact solutions in Einstein and/or string gravity, if nonholonomic distributions and moving frames of references are introduced into consideration.We also propose a canonical scheme when geometrical objects on a (pseudo) Riemannian space are nonholonomically deformed into generalized Lagrange, or Finsler, configurations on the same manifold. Such canonical transforms are defined by the coefficients of a prime metric and generate target spaces as Lagrange structures, their models of almost Hermitian/ Kähler, or nonholonomic Riemann spaces.Finally, we consider some classes of exact solutions in string and Einstein gravity modelling Lagrange-Finsler structures with solitonic pp-waves and speculate on their physical meaning.
A generalized geometric method is developed for constructing exact solutions of gravitational field equations in Einstein theory and generalizations. First, we apply the formalism of nonholonomic frame deformations (formally considered for nonholonomic manifolds and Finsler spaces) when the gravitational field equations transform into systems of nonlinear partial differential equations which can be integrated in general form. The new classes of solutions are defined by generic offdiagonal metrics depending on integration functions on one, two and three (or three and four) variables if we consider four (or five) dimensional spacetimes. Second, we use a general scheme when one (two) parameter families of exact solutions are defined by any source-free solutions of Einstein's equations with one (two) Killing vector field(s). A successive iteration procedure results in new classes of solutions characterized by an infinite number of parameters for a non-Abelian group involving arbitrary functions on one variable. Five classes of exact off-diagonal solutions are constructed in vacuum Einstein and in string gravity describing solitonic pp-wave interactions. We explore possible physical consequences of such solutions derived from primary Schwarzschild or pp-wave metrics.
This is the second paper in a series of works devoted to nonholonomic Ricci flows. By imposing non-integrable (nonholonomic) constraints on the Ricci flows of Riemannian metrics we can model mutual transforms of generalized Finsler-Lagrange and Riemann geometries. We verify some assertions made in the first partner paper and develop a formal scheme in which the geometric constructions with Ricci flow evolution are elaborated for canonical nonlinear and linear connection structures. This scheme is applied to a study of Hamilton's Ricci flows on nonholonomic manifolds and related Einstein spaces and Ricci solitons. The nonholonomic evolution equations are derived from Perelman's functionals which are redefined in such a form that can be adapted to the nonlinear connection structure. Next, the statistical analogy for nonholonomic Ricci flows is formulated and the corresponding thermodynamical expressions are found for compact configurations. Finally, we analyze two physical applications: the nonholonomic Ricci flows associated to evolution models for solitonic pp-wave solutions of Einstein equations, and compute the Perelman's entropy for regular Lagrange and analogous gravitational systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.