The small heat shock protein Hsp27 or its murine homologue Hsp25 acts as an ATP-independent chaperone in protein folding, but is also implicated in architecture of the cytoskeleton, cell migration, metabolism, cell survival, growth/differentiation, mRNA stabilization, and tumor progression. A variety of stimuli induce phosphorylation of serine residues 15, 78, and 82 in Hsp27 and serines 15 and 86 in Hsp25. This post-translational modification affects some of the cellular functions of Hsp25/27. As a consequence of the functional importance of Hsp25/27 phosphorylation, aberrant Hsp27 phosphorylation has been linked to several clinical conditions. This review focuses on the different Hsp25/27 kinases and phosphatases that regulate the phosphorylation pattern of Hsp25/27, and discusses the recent findings of the biological implications of these phosphorylation events in physiological and pathological processes. Novel therapeutic strategies aimed at restoring anomalous Hsp27 phosphorylation in human diseases will be presented.
Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed.
The MAPK-activated protein kinases belong to the Ca2+/calmodulin-dependent protein kinases. Within this group, MK2, MK3, and MK5 constitute three structurally related enzymes with distinct functions. Few genuine substrates for MK5 have been identified, and the only known biological role is in ras-induced senescence and in tumor suppression. Here we demonstrate that activation of cAMP-dependent protein kinase (PKA) or ectopic expression of the catalytic subunit Calpha in PC12 cells results in transient nuclear export of MK5, which requires the kinase activity of both Calpha and MK5 and the ability of Calpha to enter the nucleus. Calpha and MK5, but not MK2, interact in vivo, and Calpha increases the kinase activity of MK5. Moreover, Calpha augments MK5 phosphorylation, but not MK2, whereas MK5 does not seem to phosphorylate Calpha. Activation of PKA can induce actin filament accumulation at the plasma membrane and formation of actin-based filopodia. We demonstrate that small interfering RNA-triggered depletion of MK5 interferes with PKA-induced F-actin rearrangement. Moreover, cytoplasmic expression of an activated MK5 variant is sufficient to mimic PKA-provoked F-actin remodeling. Our results describe a novel interaction between the PKA pathway and MAPK signaling cascades and suggest that MK5, but not MK2, is implicated in PKA-induced microfilament rearrangement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.