In this work we discuss the finite element model using the embedded discontinuity of the strain and displacement field, for dealing with a problem of localized failure in heterogeneous materials by using a structured finite element mesh. On the chosen 1D model problem we develop all the pertinent details of such a finite element approximation. We demonstrate the presented model capabilities for representing not only failure states typical of a slender structure, with crack-induced failure in an elastic structure, but also the failure state of a massive structure, with combined diffuse (process zone) and localized cracking. A robust operator split solution procedure is developed for the present model taking into account the subtle difference between the types of discontinuities, where the strain discontinuity iteration is handled within global loop for computing the nodal displacement, while the displacement discontinuity iteration is carried out within a local, element-wise computation, carried out in parallel with the Gauss-point computations of the plastic strains and hardening variables. The robust performance of the proposed solution procedure is illustrated by a couple of numerical examples. Concluding remarks are stated regarding the class of problems where embedded discontinuity finite element method (ED-FEM) can be used as a favorite choice with respect to extended FEM (X-FEM).
We have measured the microwave resistance of highly conducting perovskite oxide SrMoO3 thin film coplanar waveguides. The epitaxial SrMoO3 thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3 nm. Layer-by-layer growth could be achieved for film thicknesses up to 400 nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29 μΩ·cm between 0.1 and 20 GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO3 is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.
Purpose-Proposes a methodology for dealing with the problem of designing a material microstructure the best suitable for a given goal. Design/methodology/approach-The chosen model problem for the design is a two-phase material, with one phase related to plasticity and another to damage. The design problem is set in terms of shape optimization of the interface between two phases. The solution procedure proposed herein is compatible with the multi-scale interpretation of the inelastic mechanisms characterizing the chosen two-phase material and it is thus capable of providing the optimal form of the material microstructure. The original approach based upon a simultaneous/sequential solution procedure for the coupled mechanics-optimization problem is proposed. Findings-Several numerical examples show a very satisfying performance of the proposed methodology. The latter can easily be adapted to other choices of design variables. Originality/value-Confirms that one can thus achieve the optimal design of the nonlinear behavior of a given two-phase material with respect to the goal specified by a cost function, by computing the optimal form of the shape interface between the phases.
Purpose -The purpose of this paper is to discuss the inelastic behavior of heterogeneous structures within the framework of finite element modelling, by taking into the related probabilistic aspects of heterogeneities. Design/methodology/approach -The paper shows how to construct the structured FE mesh representation for the failure modelling for such structures, by using a building-block of a constant stress element which can contain two different phases and phase interface. All the modifications which are needed to enforce for such an element in order to account for inelastic behavior in each phase and the corresponding inelastic failure modes at the phase interface are presented. Findings -It is demonstrated by numerical examples that the proposed structured FE mesh approach is much more efficient from the non-structured mesh representation. This feature is of special interest for probabilistic analysis, where a large amount of computation is needed in order to provide the corresponding statistics. One such case of probabilistic analysis is considered in this work where the geometry of the phase interface is obtained as the result of the Gibbs random process. Originality/value -The paper confirms that one can make the most appropriate interpretation of the heterogeneous structure properties by taking into account the fine details of the internal structure, along with the related probabilistic aspects with the proper source of randomness, such as the one addressed herein in terms of porosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.